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ON THE DISTRIBUTION OF POLYNOMIALS WITH

BOUNDED HEIGHT

CSANÁD BERTÓK∗, LAJOS HAJDU∗∗ AND ATTILA PETHŐ∗∗∗

Dedicated to Professor Andrzej Schinzel on the occasion of his 80th birthday.

Abstract. We provide an asymptotic expression for the probability
that a randomly chosen polynomial with given degree, having integral
coefficients bounded by some B, has a prescribed signature. We also
give certain related formulas and numerical results along this line. Our
theorems are closely related to earlier results of Akiyama and Pethő,
and also yield extensions of recent results of Dubickas and Sha.

1. Introduction

Let d be a positive integer, B ≥ 1 a real number. Denote by Hd(B) the
set of (d + 1)-dimensional vectors (p0, . . . , pd) satisfying |pi| ≤ B (0 ≤ i ≤
d), pd �= 0. In the case B = 1 we write simply Hd instead of Hd(1).

Given a polynomial P ∈ R[X], the non-real roots of P appear in complex
conjugate pairs. Thus d = r + 2s, where r denotes the number of real
roots and s the number of non-real pairs of roots of P . As we shall work
with arbitrary but fixed d and then r is uniquely determined by s, we call
s the signature of P . Identifying the vector (p0, . . . , pd) ∈ R

d+1 and the
polynomial pdX

d + pd−1Xd−1 + · · ·+ p0 the set Hd(B) splits naturally into
�d/2�+1 disjoint subsets according to the signature. In the sequel Hd(s,B)
denotes the subset of Hd(B) whose elements have signature s. If B = 1,
in place of Hd(s, 1) we shall simply write Hd(s). Plainly, Hd(s,B) is a
bounded set in R

d+1 for any B > 0, and we will prove that it is Lebesgue
measurable. For the Lebesgue measure (which we shall often simply call
volume) of A ⊂ R

n we write λn(A) or λ(A), if the dimension n is obvious.
Following Dubickas and Sha [4] denote by D∗d(s,B)1 the set of polynomials

f(X) = pdX
d + pd−1Xd−1 + · · · + p0 ∈ Z[X] with pd �= 0, |pi| ≤ B (i =
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1In fact Dubickas and Sha [4] called (r, s) the signature of P and used the notation

D∗
d(r, s, B) instead of D∗

d(s,B). As we frequently cite the papers of Akiyama and Pethő
[1] and [2], where only s was used for the signature and sets of polynomials were denoted
according to this convention, we follow their notation.
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