Rational approximations of the exponential function at rational points

Kalle Leppälää ${ }^{\text {a }}$, Tapani Matala-aho ${ }^{\text {b }}$, Topi Törmä ${ }^{\text {b,*,1 }}$
${ }^{\text {a }}$ Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
${ }^{\mathrm{b}}$ Mathematics, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland

A R T I C L E I N F O

Article history:

Received 11 November 2016
Received in revised form 22 March 2017
Accepted 25 March 2017
Available online xxxx
Communicated by D. Goss

MSC:

primary 11J82
secondary 11J70, 11A55
Keywords:
Diophantine approximation
Irrationality measure
Generalized continued fraction

Abstract

We give explicit and asymptotic lower bounds for the quantity $\left|e^{s / t}-M / N\right|$ by studying a generalized continued fraction expansion of $e^{s / t}$. In cases $|s| \geq 3$ we improve existing results by extracting a large common factor from the numerators and the denominators of the convergents of that generalized continued fraction.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We will present both explicit and asymptotic irrationality measure results i.e. lower bounds for the quantity $\left|e^{s / t}-M / N\right|$ as a function of positive integer N, where s / t is an arbitrary non-zero rational number.

[^0]http://dx.doi.org/10.1016/j.jnt.2017.03.014 0022-314X/® 2017 Elsevier Inc. All rights reserved.

As usual, the lower bounds are achieved by constructing sequences of high quality rational approximations to $e^{s / t}$. Our approximations are based on the convergents of the generalized continued fraction expansion

$$
\begin{equation*}
e^{z}=1+\frac{2 z}{2-z}+\frac{z^{2}}{6}+\frac{z^{2}}{10}+\frac{z^{2}}{14}+\cdots=1+\frac{2 z}{2-z+\mathrm{K}_{n=1}^{\infty} \frac{z^{2}}{4 n+2}}, \tag{1}
\end{equation*}
$$

which are in fact the diagonal Padé approximants of the exponential function [13,7, 8]. Special attention will be paid for divisibility properties of the numerators and the denominators of the convergents of

$$
{\underset{n=1}{\infty} \frac{z^{2}}{4 n+2}}^{2}
$$

evaluated at $z=s / t$. There appears an unexpected and fairly big common factor which is related to the prime number decomposition of s. Thereby when $|s| \geq 3$, we improve the existing results considerably; the comparison will be done in the next section.

Let $s \in \mathbb{Z} \backslash\{0\}, t \in \mathbb{Z}_{\geq 1}$ and $\operatorname{gcd}(s, t)=1$. Denote the inverse of the function $y(z)=z \log z, z \geq 1 / e$, as $z(y)$. We define $z_{0}(y)=y$ and $z_{n}(y)=y / \log z_{n-1}(y)$, $n \in \mathbb{Z}_{\geq 1}$. In the following we denote

$$
\left.\left.\begin{array}{c}
\alpha=\prod_{\substack{p \in \mathbb{P} \\
p \mid s}} p^{1 /(p-1)}, \quad \beta=\sum_{\substack{p \in \mathbb{P} \backslash\{2\} \\
p \mid s}} 1, \quad \gamma=\prod_{\substack{p \in \mathbb{P} \backslash\{2\} \\
p \mid s}} p, \\
\sigma=\frac{4 t \alpha}{e s^{2}}, \quad \rho= \begin{cases}\frac{7}{3}, & \sigma \geq 1, \\
5-2 \log \sigma, & \sigma<1,\end{cases} \\
Z(N)=\left(\frac{s^{2}}{\alpha^{2}}(\zeta(N)+1)\right)^{\beta} \\
\times\left(\frac{8 \gamma^{2}|s|\left(4 t \zeta(N)+6 t+s^{2}\right) \zeta(N)^{\beta}}{\alpha}+\frac{z(\sigma \log N)}{\sigma}+\beta,\right. \\
\eta=\max \left\{\frac{\operatorname{gcd}(2, s) \alpha^{2} \gamma}{N^{2} s^{2}\left|e^{s / t}-1\right|}\right) \\
\sqrt{2}\left|e^{s / t}-1\right| \gamma \\
\sqrt{2} \sigma^{\beta} \\
2
\end{array}\right) \frac{1}{2}, \frac{e}{\sigma}+\beta\right\}, \quad \varepsilon(N)=\frac{\log \log \log N}{\log \log N} .
$$

Theorem 1.1. Let $s \in \mathbb{Z} \backslash\{0\}, t \in \mathbb{Z}_{\geq 1}$ and $\operatorname{gcd}(s, t)=1$. Then

$$
1<\left|e^{s / t}-\frac{M}{N}\right| Z(N) N^{2+2 \log (|s| / \alpha) z(\sigma \log N) /(\sigma \log N)}
$$

for all $M \in \mathbb{Z} \backslash\{0\}, N \in \mathbb{Z}_{\geq N_{1}}$ with

$$
\begin{equation*}
\log N_{1}=\max \left\{(\eta-\beta) \log (\sigma(\eta-\beta)), \log \left(\frac{\operatorname{gcd}(2, s)}{\left|4 s+2(s-2 t)\left(e^{s / t}-1\right)\right|}\right)\right\} \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/5772513

Download Persian Version:

https://daneshyari.com/article/5772513

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kalle.m.leppala@gmail.com (K. Leppälä), tapani.matala-aho@oulu.fi (T. Matala-aho), topi.torma@oulu.fi (T. Törmä).
 ${ }^{1}$ The work of Topi Törmä was supported by the Väisälä foundation.

