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We give explicit and asymptotic lower bounds for the quantity 
|es/t − M/N | by studying a generalized continued fraction 
expansion of es/t. In cases |s| ≥ 3 we improve existing results 
by extracting a large common factor from the numerators 
and the denominators of the convergents of that generalized 
continued fraction.
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1. Introduction

We will present both explicit and asymptotic irrationality measure results i.e. lower 
bounds for the quantity |es/t −M/N | as a function of positive integer N , where s/t is 
an arbitrary non-zero rational number.
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As usual, the lower bounds are achieved by constructing sequences of high quality 
rational approximations to es/t. Our approximations are based on the convergents of the 
generalized continued fraction expansion
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which are in fact the diagonal Padé approximants of the exponential function [13,7,
8]. Special attention will be paid for divisibility properties of the numerators and the 
denominators of the convergents of
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evaluated at z = s/t. There appears an unexpected and fairly big common factor which 
is related to the prime number decomposition of s. Thereby when |s| ≥ 3, we improve 
the existing results considerably; the comparison will be done in the next section.

Let s ∈ Z \ {0}, t ∈ Z≥1 and gcd(s, t) = 1. Denote the inverse of the function 
y(z) = z log z, z ≥ 1/e, as z(y). We define z0(y) = y and zn(y) = y/ log zn−1(y), 
n ∈ Z≥1. In the following we denote
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Theorem 1.1. Let s ∈ Z \ {0}, t ∈ Z≥1 and gcd(s, t) = 1. Then
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for all M ∈ Z \ {0}, N ∈ Z≥N1 with
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