Accepted Manuscript

Sums of two rational cubes with many prime factors

Dongho Byeon, Keunyoung Jeong

PII:
S0022-314X(17)30159-2
DOI:
http://dx.doi.org/10.1016/j.jnt.2017.03.011
Reference:
YJNTH 5732

To appear in: Journal of Number Theory

Received date: 20 May 2016
Revised date: 24 March 2017
Accepted date: 24 March 2017

Please cite this article in press as: D. Byeon, K. Jeong, Sums of two rational cubes with many prime factors, J. Number Theory (2017), http://dx.doi.org/10.1016/j.jnt.2017.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

SUMS OF TWO RATIONAL CUBES WITH MANY PRIME FACTORS

DONGHO BYEON AND KEUNYOUNG JEONG

Abstract

In this paper, we show that for any given integer $k \geq 2$, there are infinitely many cube-free integers n having exactly k prime divisors such that n is a sum of two rational cubes. This is a cubic analogue of the work of Tian [Ti], which proves that there are infinitely many congruent numbers having exactly k prime divisors for any given integer $k \geq 1$.

1. Introduction and results

Let n be a cube-free integer and $E_{n}: x^{3}+y^{3}=n$ the elliptic curve defined over \mathbb{Q}. Let $L_{E_{n}}(s)$ be the Hasse-Weil L-function of E_{n} and $w_{n} \in\{1,-1\}$ its root number. Then $L_{E_{n}}(s)$ satisfies the functional equation

$$
N^{s / 2}(2 \pi)^{-s} \Gamma(s) L_{E_{n}}(s)=w_{n} N^{(2-s) / 2}(2 \pi)^{-(2-s)} \Gamma(2-s) L_{E_{n}}(2-s),
$$

where N is the conductor of E_{n} whose divisors are 3 and primes $p \mid n$. The analytic rank of E_{n} is the order of vanishing at the central point $s=1$ of $L_{E_{n}}(s)$. The functional equation implies that $w_{n}=1$ if and only if the analytic rank of E_{n} is even. The Birch and Swinnerton-Dyer(BSD) conjecture states that the rank of the Mordell-Weil group $E_{n}(\mathbb{Q})$ is equal to the analytic rank of E_{n}. So the BSD conjecture implies that if $w_{n}=-1$, then n is a sum of two rational cubes.

The root number w_{n} can be computed by the following way, due to Birch and Stephens [BS],

$$
w_{n}=\prod_{p \text { prime }} w_{n}(p),
$$

[^0]
https://daneshyari.com/en/article/5772514

Download Persian Version:
https://daneshyari.com/article/5772514

Daneshyari.com

[^0]: The authors were supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2013R1A1A2007694).

