

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On rational approximations to two irrational numbers

Artūras Dubickas^{a,b,*}

 ^a Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
^b Institute of Mathematics and Informatics, Vilnius University, Akademijos 4, Vilnius LT-08663, Lithuania

ARTICLE INFO

Article history: Received 2 November 2016 Received in revised form 12 January 2017 Accepted 12 January 2017 Available online 6 March 2017 Communicated by D. Goss

MSC: 11J70 11J72 11A55 68R15

Keywords: Continued fraction expansion Irrational number Irrationality function Combinatorics on words

ABSTRACT

Let α and β be two irrational real numbers satisfying $\alpha \pm \beta \notin \mathbb{Z}$. We prove several inequalities between $\min_{k \in \{1,...,n\}} ||k\alpha||$ and $\min_{k \in S} ||k\beta||$, where S is a set of positive integers, e.g., $S = \{n\}, S = \{1, ..., n-1\}$ or $S = \{1, ..., n\}$ and ||x||stands for the distance between $x \in \mathbb{R}$ and the nearest integer. We also give some constructions of α and β which show that the result of Kan and Moshchevitin (asserting that the difference between $\min_{k \in \{1,...,n\}} ||k\alpha||$ and $\min_{k \in \{1,...,n\}} ||k\beta||$ changes its sign infinitely often) and its variations are best possible. Some of the results are given in terms of the sequence $d(n) = d_{\alpha,\beta}(n)$ defined as the difference between reciprocals of these two quantities. In particular, we prove that the sequence d(n) is unbounded for any irrational α, β satisfying $\alpha \pm \beta \notin \mathbb{Z}$. \otimes 2017 Elsevier Inc. All rights reserved.

E-mail address: arturas.dubickas@mif.vu.lt.

 $[\]ast$ Correspondence to: Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jnt.2017.01.026} 0022-314 X @ 2017 Elsevier Inc. All rights reserved.$

1. Introduction

Given a real number ξ , let

$$\psi_{\xi}(n) := \min_{k \in \{1,2,\dots,n\}} \|k\xi\|$$

be the irrationality measure function of ξ , where ||x|| stands for the distance between $x \in \mathbb{R}$ and the nearest integer. In [1], Kan and Moshchevitin proved that for any two irrational real numbers α, β satisfying $\alpha \pm \beta \notin \mathbb{Z}$ the difference

$$\psi_{\alpha}(n) - \psi_{\beta}(n)$$

is positive for infinitely many $n \in \mathbb{N}$ and also negative for infinitely many $n \in \mathbb{N}$. Although recently a metric result of this type for some matrices is given in [4], in the above mentioned paper [1], by some classical results of Khintchine (see Theorems 1 and 2 in [1] or the original paper of Kchintchine [2]), it was shown that the possibilities to extend this result to dimensions greater than 1 are very limited.

In this paper we first give a short proof of the next result (equivalent to that in [1]) and then show that this result and its variations are in some sense best possible.

Theorem 1. Let α and β be two irrational real numbers satisfying $\alpha \pm \beta \notin \mathbb{Z}$. Then,

$$\psi_{\alpha}(n) > \|n\beta\| \tag{1}$$

for infinitely many $n \in \mathbb{N}$.

Observe that (1) implies

$$\psi_{\alpha}(n) > \|n\beta\| \ge \psi_{\beta}(n)$$

for infinitely many $n \in \mathbb{N}$. Also, since the condition $\alpha \pm \beta \notin \mathbb{Z}$ is equivalent to $\beta \pm \alpha \notin \mathbb{Z}$, by reversing the roles of α and β , we derive that $\psi_{\beta}(n) > ||n\alpha|| \ge \psi_{\alpha}(n)$ for infinitely many $n \in \mathbb{N}$. In particular, this implies the main result of [1].

Although in the proof of Theorem 1 we use the language of combinatorics on words, the proof is essentially the same as in [1]. The same setting is also used in the proof of Theorem 5 below. However, the full advantage of this approach shows up in the proof of Theorem 2 which is much more complicated.

We remark that under condition $\alpha \pm \beta \in \mathbb{Z}$ we have $||n\alpha|| = ||n\beta||$ for each $n \in \mathbb{N}$, and hence $\psi_{\alpha}(n) = \psi_{\beta}(n)$ for each $n \in \mathbb{N}$.

Since $\psi_{\alpha}(n)$ and $\psi_{\beta}(n)$ both tend to zero as $n \to \infty$ (and so their difference tends to 0 as $n \to \infty$, but $\psi_{\alpha}(n) \neq 0$ and $\psi_{\beta}(n) \neq 0$ when $\alpha, \beta \notin \mathbb{Q}$), it is of interest to investigate not only the sequence of differences of two irrationality measures $\psi_{\alpha}(n) - \psi_{\beta}(n)$, n =1,2,3,..., but also the sequence of differences of their reciprocals Download English Version:

https://daneshyari.com/en/article/5772526

Download Persian Version:

https://daneshyari.com/article/5772526

Daneshyari.com