Degree matrices and enumeration of rational points of some hypersurfaces over finite fields

Ruyun Wang, Binbin Wen, Wei Cao*
Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, PR China

A R T I C L E I N F O

Article history

Received 15 November 2016
Received in revised form 13 January 2017
Accepted 13 January 2017
Available online 6 March 2017
Communicated by D. Wan

$M S C$:

11T06
11 T 55
11D79
Keywords:
Degree matrix
Rational point
Gauss sum

Abstract

Let f be a polynomial over the finite field \mathbb{F}_{q} with degree matrix $D_{f} \in \mathbb{Z}_{>0}^{n \times m}$ and $N(f)$ be the number of \mathbb{F}_{q}-rational points on the hypersurface defined by $f=0$. For an $M \in$ $\mathbb{Z}^{n \times m}$, let $D_{f} \stackrel{r_{q}}{\sim} M$ denote that D_{f} is row equivalent to M in the ring $\mathbb{Z} /(q-1) \mathbb{Z}$. Sun has originally found the formula for $N(f)$ when $n=m$ and $0<D_{f} \stackrel{r_{q}}{\sim} \operatorname{diag}(1, \ldots, 1)$, which was extended to $m \leq n$ by Cao and Sun. In this paper we obtain the formula for $N(f)$ when $m \leq n$ and $0<D_{f} \stackrel{r_{q}}{\sim}$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with $\lambda_{i} \in\{1,2\}$, which further generalizes the results of Sun and Cao.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_{q} be the finite field of order q where $q=p^{h}$ and p is an odd prime. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero polynomial in n variables of the form

$$
\begin{equation*}
f=a_{1} x_{1}^{d_{11}} \cdots x_{n}^{d_{n 1}}+\cdots+a_{m} x_{1}^{d_{1 m}} \cdots x_{n}^{d_{n m}}, \quad a_{i} \in \mathbb{F}_{q}^{*}, \quad d_{i j} \in \mathbb{Z}_{\geq 0} \tag{1}
\end{equation*}
$$

[^0]The degree matrix of f, denoted D_{f}, is defined to be the $n \times m$ matrix $D_{f}=\left(D_{1}, \ldots, D_{m}\right)$ with $D_{j}=\left(d_{1 j}, \ldots, d_{n j}\right)^{\mathrm{T}}$ for $j=1, \ldots, m$. Let $N(f)$ be the number of \mathbb{F}_{q}-rational points on the affine hypersurface $f=0$ in $\mathbb{A}^{n}\left(\mathbb{F}_{q}\right)$, namely,

$$
N(f)=\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{A}^{n}\left(\mathbb{F}_{q}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=0\right\} .
$$

Though it is difficult to obtain an explicit formula for $N(f)$ in general, it has been studied extensively because of its theoretical importance as well as applications in cryptology and coding theory; refer to [6] for detail. We simple write $D_{f}>0$ when all the entries in D_{f} are positive. Sun [7] discovered the following result.

Theorem 1.1. Let f be of the form as in (1) with $D_{f}>0$. If $m=n$ and $\operatorname{gcd}\left(\operatorname{det}\left(D_{f}\right), q-\right.$ $1)=1$, then for $b \in \mathbb{F}_{q}$ we have

$$
N(f-b)= \begin{cases}q^{n}-(q-1)^{n}+\frac{(q-1)^{n}+(-1)^{n}(q-1)}{q} & \text { if } b=0, \\ \frac{(q-1)^{n}-(-1)^{n}}{q} & \text { if } b \neq 0 .\end{cases}
$$

Sun's theorem was extended to $m \leq n$ by Cao and Sun [2], which can be stated in a stronger version as below.

Theorem 1.2. Let f be of the form as in (1) with $D_{f}>0$. If $m \leq n$ and D_{f} is left invertible in the ring $\mathbb{Z} /(q-1) \mathbb{Z}$, then for $b \in \mathbb{F}_{q}$ we have

$$
N(f-b)= \begin{cases}q^{n}-q^{-1}(q-1)^{n-m+1}\left((q-1)^{m}-(-1)^{m}\right) & \text { if } b=0 \\ q^{-1}(q-1)^{n-m}\left((q-1)^{m}-(-1)^{m}\right) & \text { if } b \neq 0\end{cases}
$$

Provided that the augmented degree matrix (see Section 2) is taken into consideration, Theorem 1.2 can be further strengthened (see [4,3]). However we will study another generalization of Theorem 1.2 in this paper. Note that condition that D_{f} is left invertible in $\mathbb{Z} /(q-1) \mathbb{Z}$ is equivalent to say that D_{f} is row equivalent to a diagonal matrix with all the diagonal elements being 1 in $\mathbb{Z} /(q-1) \mathbb{Z}$, which we write in notation as $D_{f} \stackrel{r_{q}}{\sim}$ $\Lambda=\operatorname{diag}(1, \ldots, 1)$. In this paper we will consider the case that $D_{f} \stackrel{r_{q}}{\sim} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with $\lambda_{i} \in\{1,2\}$. Some preliminary knowledge will be introduced in Section 2 and main results will be given in Section 3. It will be seen that the formula for $N(f)$ becomes more complicated than those in Theorems 1.1 and 1.2 and several concise formulae for $N(f)$ will be obtained in special cases.

2. Preliminaries

We first briefly introduce a formula for $N(f)$ in terms of Gauss sums; for detail, see $[1,5,8,9]$. Let \mathbb{Q}_{p} be the field of p-adic numbers and let \mathbb{C}_{p} be the completion of an algebraic closure of \mathbb{Q}_{p}. Let χ be the Teichmüller character of the multiplicative group \mathbb{F}_{q}^{*}.

https://daneshyari.com/en/article/5772529

Download Persian Version:
https://daneshyari.com/article/5772529

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: caowei@nbu.edu.cn (W. Cao).

