The determinant of a double covering of the projective space of even dimension and the discriminant of the branch locus

Yasuhiro Terakado
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

A R T I C L E I N F O

Article history:

Received 31 August 2016
Received in revised form 31
December 2016
Accepted 9 January 2017
Available online 6 March 2017
Communicated by
J.-L. Colliot-Thélène

MSC:

11G35
14G25
14G15
Keywords:
Galois representations
Determinants
Discriminants
Branched coverings
Del Pezzo surfaces

Abstract

The determinant of the Galois action on the ℓ-adic cohomology of the middle degree of a proper smooth variety of even dimension defines a quadratic character of the absolute Galois group of the base field. In this article, we show that for a branched double covering of the projective space of even dimension, the character is computed via the square root of the discriminant of the defining polynomial of the double covering. As a corollary, we deduce that the parity of a Galois permutation of the exceptional divisors on a Del Pezzo surface of degree 2 can be computed by the discriminant. © 2017 Elsevier Inc. All rights reserved.

[^0]Let k be a field, \bar{k} an algebraic closure of k and k_{s} the separable closure of k contained in \bar{k}. Let $\Gamma_{k}=\operatorname{Gal}\left(k_{s} / k\right)=\operatorname{Aut}_{k}(\bar{k})$.

Let X be a proper smooth variety of even dimension n over k. If ℓ is a prime number invertible in k, the ℓ-adic cohomology $V=H^{n}\left(X_{\bar{k}}, \mathbb{Q}_{\ell}\left(\frac{n}{2}\right)\right)$ defines an orthogonal representation of the absolute Galois group Γ_{k}. The determinant

$$
\operatorname{det} V: \Gamma_{k} \rightarrow\{ \pm 1\} \subset \mathbb{Q}_{\ell}^{\times}
$$

is independent of the choice of ℓ (Corollary 2.2).
First we assume that char $k \neq 2$. Let f be a homogeneous polynomial of $n+1$ variables of even degree d with coefficients in k. Let X be the branched double covering of the projective space of dimension n defined by the equation $y^{2}=f$. Then, the variety X is smooth if and only if the divided discriminant $\operatorname{disc}_{d}(f)$ (Definition 1.3) is not equal to zero. We prove the following theorem (Theorem 2.3).

Theorem 0.1. If the double covering X is smooth, then the quadratic character $\operatorname{det} V$ is defined by the square root of $(-1)^{\frac{d n}{4}} \operatorname{disc}_{d}(f)$.
[In other words, the kernel of $\operatorname{det} V: \Gamma_{k} \rightarrow\{ \pm 1\}$ is the subgroup of Γ_{k} corresponding to the field extension $k\left(\sqrt{(-1)^{\frac{d n}{4}} \cdot \operatorname{disc}_{d}(f)}\right) / k$.]

We follow the method given by T. Saito in [6] where he computes $\operatorname{det} V$ for a smooth hypersurface of even dimension via the square root of the discriminant of a defining polynomial of the hypersurface. The proof of the Theorem 0.1 consists of two parts. First we follow the method given in [6], using a standard argument on universal family. Second, we then determine the $\operatorname{det} V$ by a specialization argument.

Next we assume that char $k=2$. In this case, we consider more general polynomials $y^{2}+a y=b$ defining branched double coverings where a and b are homogeneous polynomials of degree $\frac{d}{2}$ and d over k. Let

$$
A=\sum_{|I|=\frac{d}{2}} R_{I} T^{I}, \quad B=\sum_{|J|=d} S_{J} T^{J}
$$

be the universal polynomials of degree $\frac{d}{2}$ and d. Then, the discriminant $\operatorname{disc}_{d}\left(A^{2}+4 B\right)$ is a polynomial of $\left(R_{I}\right)_{|I|=\frac{d}{2}}$ and $\left(S_{J}\right)_{|J|=d}$ of coefficients in \mathbb{Z}. The greatest common divisor of the coefficients of $\operatorname{disc}_{d}\left(A^{2}+4 B\right)$ is $4^{d \cdot s(n, d)}$, where

$$
s(n, d)=\frac{(n+1)(d-1)^{n}-a(n, d)}{d}, \quad a(n, d)=\frac{(d-1)^{n+1}-(-1)^{n+1}}{d}
$$

(Lemma 3.3). Further, there exist polynomials C and D satisfying

$$
4^{-d \cdot s(n, d)}(-1)^{\frac{d n}{4}} \operatorname{disc}_{d}\left(A^{2}+4 B\right)=C^{2}+4 D
$$

(Theorem 3.6). We prove the following theorem (Theorem 3.7).

https://daneshyari.com/en/article/5772533

Download Persian Version:
https://daneshyari.com/article/5772533

Daneshyari.com

[^0]: E-mail address: terakado@ms.u-tokyo.ac.jp.

