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The distribution and density of cyclic groups of the

reductions of an elliptic curve over a function field

Márton Erdélyi ∗

Abstract
Let K be a global field of finite characteristic p ≥ 2, and let E/K be a non-isotrivial elliptic

curve. We give an asympotoic formula of the number of places ν for which the reduction of E
at ν is a cyclic group. Moreover we determine when the Dirichlet density of those places is 0.

Keywords: Elliptic curves; Function fields of positive characteristics; Prime distributions,
Chebotarev density theorem; Group structures; Wild ramification.

1 Statement of results
Let K be a global field of characteristic p and genus gK , and let k = Fq ⊂ K (q = pf ) be the

algebraic closure of Fp in K. We denote by VK the set of places of K. For ν ∈ VK , we denote by kν
the residue field of K at ν, and by deg(ν) := [kν : Fq] the degree of ν. Let k be an algebraic closure
of k. Denote φ : (x �→ xq) ∈ Gal(k/k) the q-Frobenius. Let kr|k be the unique degree r extension
in k.

Let E/K be an elliptic curve over K with j-invariant jE /∈ k, which we shall standardly call
non-isotrivial. We denote by VE/K the set of places of K for which the reduction Eν/kν is smooth
and |V E/K | = ∑

ν /∈VE/K
deg(ν). For n ∈ N \ {0} let VE/K(n) = {ν ∈ VE/K | deg(ν) = n}.

From the theory of elliptic curves we know that for ν ∈ VE/K , Eν(kν) � Z/dνZ× Z/dνeνZ for
nonzero integers dν , eν , uniquely determined by E and ν. We call the integers dν and dνeν the
elementary divisors of Eν .

The goal of this paper is to extend the results of [CT] about the distribution of the places
ν ∈ VE/K for which Eν(kν) is a cyclic group. Such questions have been investigated for the re-
ductions of an elliptic curve defined over Q (e.g. in [BaSh], [Co1], [Co2], [CoMu], [GuMu], [Mu1],
[Mu2], [Se2]), mainly in relation with the elliptic curve analogue of Artin’s primitive root conjecture
formulated by Lang and Trotter in [LaTr]. This latter conjecture was investigated in the function
field setting E/K by Clark and Kuwata [ClKu], and by Hall and Voloch [HaVo] (see also Voloch’s
work on constant curves [Vo1], [Vo2]). In [ClKu], a particular emphasis was placed on the study of
the cyclicity of Eν(kν). Recently Cojacaru, Toth and Voloch [CTV] established distribution results
also for the question of places with reductions of square-free orders (which is a more strict condition,
than cyclicity).

In this paper we obtain an explicit asymptotic formula for the number of places ν ∈ VE/K , of
fixed degree, for which Eν(kν) is cyclic. Our result is a direct extension of the work of [CT] which
worked in finite characteristic p > 3.

Theorem 1. Let E/K be a non-isotrivial elliptic curve. For all ε > 0 there exists c = c(K,E, ε)
such that for all n ∈ N we have∣∣∣∣# (

ν ∈ VE/K(n)|Eν(kν) is cyclic
)− δ(E/K, 1, n)

qn

n

∣∣∣∣ ≤ c
qn/2+ε

n
,

where
δ(E/K, 1, n) =

∑
m|qn−1

μ(m)ordm(q)

|K(E[m]) : K| ,

a μ is the Moebius function and ordm(q) denotes the multiplicative order of q modulo m for m ∈ N,
(m, q) = 1.
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