

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Equidistribution of the crucial measures in non-Archimedean dynamics

Kenneth Jacobs

Department of Mathematics, Northwestern University, Evanston, IL 60202, USA

A R T I C L E I N F O

Article history: Received 7 September 2016 Received in revised form 23 February 2017 Accepted 23 February 2017 Available online 26 April 2017 Communicated by D. Goss

MSC: primary 37P50 secondary 37P30, 37P05, 11S82

Keywords: Non-Archimedean dynamics Equidistribution Resultant Berkovich space Barycenter Crucial measures

ABSTRACT

Text. Let K be a complete, algebraically closed, non-Archimedean valued field, and let $\phi \in K(z)$ with $\deg(\phi) \geq 2$. In this paper we consider the family of functions ord $\operatorname{Res}_{\phi^n}(x)$, which measure the resultant of ϕ^n at points x in $\mathbf{P}_{\mathbf{K}}^1$, the Berkovich projective line, and show that they converge locally uniformly to the diagonal values of the Arakelov–Green's function $g_{\mu_{\phi}}(x, x)$ attached to the canonical measure of ϕ . Following this, we are able to prove an equidistribution result for Rumely's crucial measures ν_{ϕ^n} , each of which is a probability measure supported at finitely many points whose weights are determined by dynamical properties of ϕ .

Video. For a video summary of this paper, please visit https://youtu.be/YCCZD1iwe00.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $(K, |\cdot|)$ be a complete, algebraically closed, non-Archimedean valued field, \mathcal{O}_K its ring of integers, and \mathfrak{m}_K its maximal ideal. Denote by k its residue field $k = \mathcal{O}_K/\mathfrak{m}_K$. We normalize the absolute value on K so that $\log_v(|x|) = -\operatorname{ord}_{\mathfrak{m}_K}(x)$.

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2017.02.018} 0022-314 X @ 2017 Elsevier Inc. All rights reserved.$

E-mail address: ken@northwestern.edu.

This paper is concerned with the dynamics of a rational map $\phi \in K(z)$ of degree $d \geq 2$ on the Berkovich projective line over K, which we denote $\mathbf{P}_{\mathrm{K}}^1$. Rumely has recently introduced two equivariants attached to such a map that carry information about the reduction of conjugates of ϕ [10,11]. The first equivariant is a function ord $\operatorname{Res}_{\phi} : \mathbf{P}_{\mathrm{K}}^1 \to \mathbb{R}$, which measures the resultant of $\operatorname{GL}_2(K)$ -conjugates of a homogeneous lift of ϕ ; if ϕ has potential good reduction, the locus where this function is minimized identifies the conjugate realizing good reduction.

The second equivariant is a probability measure ν_{ϕ} called the crucial measure, which is defined as a weighted sum of point masses (see [11] Theorem 6.2):

$$\nu_{\phi} := \frac{1}{d-1} \sum_{P \in \mathbf{H}_{\mathrm{K}}^{1}} w_{\phi}(P) \delta_{P} ;$$

here, $w_{\phi}(P)$ is a certain weight function which vanishes on points of type I, III and IV and whose values at type II points are determined by the reduction of ϕ at the corresponding point $P \in \mathbf{H}_{\mathrm{K}}^1$; an explicit formula is given in [11] Definition 8. In particular, the weight function is integer valued, and only finitely many points have positive weight. Rumely showed that the formulation of ν_{ϕ} given above arises naturally when computing the Laplacian of ordRes_{ϕ} on a canonical subtree $\Gamma_{\widehat{\mathrm{FR}}}$ of $\mathbf{H}_{\mathrm{K}}^1$ (see [11] Corollary 6.5).

These equivariants have been used to establish several important facts in non-Archimedean dynamics. Using the measures ν_{ϕ} , Rumely has shown that ϕ can have at most d-1 repelling type II points in $\mathbf{P}^{1}_{\mathrm{K}}$ (see [11] Corollary 6.3); prior to this, it was unknown whether there were always finitely many such points. Rumely has also used these measures to show that semistable reduction of ϕ is equivalent to minimality of the resultant (see [11] Theorem 7.4; Szpiro, Tepper and Williams had previously shown that semi-stable reduction *implies* minimality of the resultant using different techniques, and their result holds for morphisms on higher dimension projective spaces; see [14] Theorem 3.3). In [6] Doyle, the author, and Rumely used ordRes_{ϕ} and ν_{ϕ} to show that for quadratic rational maps, the points in $\mathrm{supp}(\nu_{\phi})$ determine the class of the reduction $\tilde{\phi}$ in the moduli space $\mathcal{M}_2(k)$.

In this paper, we consider the corresponding equivariants attached to the iterates of ϕ^n . Our first result concerns the functions ordRes $_{\phi^n}$:

Theorem 1. For $x \in \boldsymbol{H}_{K}^{1}$, the normalized functions

$$\frac{1}{d^{2n} - d^n} \operatorname{ord} \operatorname{Res}_{\phi^n}(x)$$

converge to the diagonal values of the Arakelov-Green's function, $g_{\phi}(x,x)$ of ϕ . The convergence is locally uniform on \mathbf{H}_{K}^{1} in the strong topology.

We state and prove a more explicit version of Theorem 1 in Section 3 below (see Theorem 4); in particular, we are able to show that the error term is $O\left(\frac{1}{d^n}\right)$. Our

Download English Version:

https://daneshyari.com/en/article/5772600

Download Persian Version:

https://daneshyari.com/article/5772600

Daneshyari.com