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1. Introduction

A sequence of complex numbers F(n),en is called a linear recurrence if there exist
some cg,...,cx,—1 € C (k> 1), with ¢y # 0, such that

k—1
Flnt k)= ¢;F(n+j),
j=0
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for all n € N. In turn, this is equivalent to an (unique) expression
T
F(n) =Y filn)af,
i=1

for all n € N, where fi,..., f, € C[X] are nonzero polynomials and aq,...,a, € C* are
all the distinct roots of the polynomial

Xk —Ck_le_l — —61X—CQ.

Classically, a1, ...,qa, and k are called the roots and the order of F, respectively. Fur-
thermore, F' is said to be nondegenerate if none the ratios a;/c; (i # j) is a root of
unity, and F' is said to be simple if all the f1,..., f, are constant. We refer the reader
to [8, Ch. 1-8] for the general theory of linear recurrences.

Hereafter, let F' and G be linear recurrences and let R be a finitely generated subring
of C. Assume also that the roots of F' and G together generate a multiplicative torsion-
free group. This “torsion-free” hypothesis is not a loss of generality. Indeed, if the group
generated by the roots of F' and G has torsion order ¢, then for each »r =0,1,...,¢g—1
the roots of the linear recurrences F,.(n) = F(gn + r) and G,(n) = G(qn + r) generate
a torsion-free group. Therefore, all the results in the following can be extended just by
partitioning N into the arithmetic progressions of modulo g and by studying each pair of
linear recurrences F)., G, separately. Finally, define the following set of natural numbers

N:={neN:Gn)#0, F(n)/G(n) € R}.

Regarding the condition G(n) # 0, note that, by the “torsion-free” hypothesis, G(n) is
nondegenerate and hence the Skolem—Mahler—Lech Theorem [8, Theorem 2.1] implies
that G(n) = 0 only for finitely many n € N. In the sequel, we shall tacitly disregard such
integers.

Divisibility properties of linear recurrences have been studied by several authors.
A classical result, conjectured by Pisot and proved by van der Poorten, is the Hadamard-
quotient Theorem, which states that if A" contains all sufficiently large integers, then F'/G
is itself a linear recurrence [13,21].

Corvaja and Zannier [7, Theorem 2| gave the following wide extension of the
Hadamard-quotient Theorem (see also [6] for a previous weaker result by the same au-
thors).

Theorem 1.1. If N is infinite, then there exists a nonzero polynomial P € C[X] such that
both the sequences n — P(n)F(n)/G(n) and n — G(n)/P(n) are linear recurrences.

The proof of Theorem 1.1 makes use of the Schmidt’s Subspace Theorem. We refer
the reader to [4] for a survey on several applications of the Schmidt’s Subspace Theorem
in Number Theory.
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