ARTICLE IN PRESS

Journal of Number Theory ••• (••••) •••-•••

Journal of Number Theory

www.elsevier.com/locate/jnt

Distribution of integral values for the ratio of two linear recurrences

Carlo Sanna

Università degli Studi di Torino, Department of Mathematics, Turin, Italy

A R T I C L E I N F O

Article history: Received 13 January 2017 Received in revised form 14 April 2017 Accepted 20 April 2017 Available online xxxx Communicated by D. Goss

MSC: primary 11B37 secondary 11A07, 11N25

Keywords: Linear recurrence Divisibility

ABSTRACT

Let F and G be linear recurrences over a number field \mathbb{K} , and let \mathfrak{R} be a finitely generated subring of \mathbb{K} . Furthermore, let \mathcal{N} be the set of positive integers n such that $G(n) \neq 0$ and $F(n)/G(n) \in \mathfrak{R}$. Under mild hypothesis, Corvaja and Zannier proved that \mathcal{N} has zero asymptotic density. We prove that $\#(\mathcal{N} \cap [1, x]) \ll x \cdot (\log \log x / \log x)^h$ for all $x \geq 3$, where h is a positive integer that can be computed in terms of Fand G. Assuming the Hardy–Littlewood k-tuple conjecture, our result is optimal except for the term $\log \log x$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A sequence of complex numbers $F(n)_{n \in \mathbb{N}}$ is called a *linear recurrence* if there exist some $c_0, \ldots, c_{k-1} \in \mathbb{C}$ $(k \ge 1)$, with $c_0 \ne 0$, such that

$$F(n+k) = \sum_{j=0}^{k-1} c_j F(n+j),$$

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2017.04.015} 0022-314 X @ 2017 Elsevier Inc. All rights reserved.$

E-mail address: carlo.sanna.dev@gmail.com.

Please cite this article in press as: C. Sanna, Distribution of integral values for the ratio of two linear recurrences, J. Number Theory (2017), http://dx.doi.org/10.1016/j.jnt.2017.04.015

ARTICLE IN PRESS

C. Sanna / Journal of Number Theory ••• (••••) •••-•••

for all $n \in \mathbb{N}$. In turn, this is equivalent to an (unique) expression

$$F(n) = \sum_{i=1}^{r} f_i(n) \,\alpha_i^n,$$

for all $n \in \mathbb{N}$, where $f_1, \ldots, f_r \in \mathbb{C}[X]$ are nonzero polynomials and $\alpha_1, \ldots, \alpha_r \in \mathbb{C}^*$ are all the distinct roots of the polynomial

$$X^{k} - c_{k-1}X^{k-1} - \dots - c_{1}X - c_{0}.$$

Classically, $\alpha_1, \ldots, \alpha_r$ and k are called the *roots* and the *order* of F, respectively. Furthermore, F is said to be *nondegenerate* if none the ratios α_i/α_j $(i \neq j)$ is a root of unity, and F is said to be *simple* if all the f_1, \ldots, f_r are constant. We refer the reader to [8, Ch. 1–8] for the general theory of linear recurrences.

Hereafter, let F and G be linear recurrences and let \mathfrak{R} be a finitely generated subring of \mathbb{C} . Assume also that the roots of F and G together generate a multiplicative torsionfree group. This "torsion-free" hypothesis is not a loss of generality. Indeed, if the group generated by the roots of F and G has torsion order q, then for each $r = 0, 1, \ldots, q - 1$ the roots of the linear recurrences $F_r(n) = F(qn + r)$ and $G_r(n) = G(qn + r)$ generate a torsion-free group. Therefore, all the results in the following can be extended just by partitioning \mathbb{N} into the arithmetic progressions of modulo q and by studying each pair of linear recurrences F_r , G_r separately. Finally, define the following set of natural numbers

$$\mathcal{N} := \{ n \in \mathbb{N} : G(n) \neq 0, \ F(n)/G(n) \in \mathfrak{R} \}.$$

Regarding the condition $G(n) \neq 0$, note that, by the "torsion-free" hypothesis, G(n) is nondegenerate and hence the Skolem–Mahler–Lech Theorem [8, Theorem 2.1] implies that G(n) = 0 only for finitely many $n \in \mathbb{N}$. In the sequel, we shall tacitly disregard such integers.

Divisibility properties of linear recurrences have been studied by several authors. A classical result, conjectured by Pisot and proved by van der Poorten, is the Hadamardquotient Theorem, which states that if \mathcal{N} contains all sufficiently large integers, then F/G is itself a linear recurrence [13,21].

Corvaja and Zannier [7, Theorem 2] gave the following wide extension of the Hadamard-quotient Theorem (see also [6] for a previous weaker result by the same authors).

Theorem 1.1. If \mathcal{N} is infinite, then there exists a nonzero polynomial $P \in \mathbb{C}[X]$ such that both the sequences $n \mapsto P(n)F(n)/G(n)$ and $n \mapsto G(n)/P(n)$ are linear recurrences.

The proof of Theorem 1.1 makes use of the Schmidt's Subspace Theorem. We refer the reader to [4] for a survey on several applications of the Schmidt's Subspace Theorem in Number Theory. Download English Version:

https://daneshyari.com/en/article/5772604

Download Persian Version:

https://daneshyari.com/article/5772604

Daneshyari.com