Differences between elements of the same order in a finite field

Joshua Harrington ${ }^{\text {a }}$, Lenny Jones ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Cedar Crest College, Allentown, PA, USA
${ }^{\text {b }}$ Department of Mathematics, Shippensburg University, PA, USA

A R T I C L E I N F O

Article history:

Received 23 January 2017
Received in revised form 12 April 2017
Accepted 20 April 2017
Available online xxxx
Communicated by D. Goss

MSC:

primary 11A07
secondary 11B39, 12Y05

Keywords:

Finite field
Order
Resultant
Primitive root
Primitive divisor

Abstract

In 1975, Michael Szalay showed that for any prime $p>10^{19}$ and any integer δ with $1 \leq \delta \leq p-1$, there exist at least two primitive roots g and h modulo p such that $g-h \equiv \delta$ $(\bmod p)$. Very recently, Brazelton, Harrington, Kannan and Litman have shown that for any $n>6$, there exists a prime $p \equiv 1(\bmod n)$ for which there are two elements a and b of order n modulo p such that $a-b \equiv 1(\bmod p)$. In this article, we extend these ideas to investigate arbitrary differences δ between elements of the same arbitrary order n modulo a prime $p \equiv 1(\bmod n)$. Moreover, we show how all elements of a specific order n can be derived from a single fixed difference δ. Finally, we deduce a result concerning the differences between primitive roots for certain primes $p \equiv 3$ $(\bmod 4)$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In 1975, Michael Szalay [9] proved the following theorem.

[^0]http://dx.doi.org/10.1016/j.jnt.2017.04.008
0022-314X/© 2017 Elsevier Inc. All rights reserved.

Theorem 1.1. For all primes $p>10^{19}$ and any integer δ with $1 \leq \delta \leq p-1$, there exist at least two primitive roots g and h modulo p such that $g-h \equiv \delta(\bmod p)$.

Very recently, Brazelton, Harrington, Kannan and Litman [2] have broadened the focus from elements of order $p-1$ to elements of arbitrary order n modulo p, while fixing the difference δ between elements of the same order n at $\delta=1$. In particular, they have proven the following result.

Theorem 1.2. There exists a prime $p \equiv 1(\bmod n)$ such that the finite field \mathbb{F}_{p} contains consecutive elements of order n if and only if $n \notin\{1,2,3,6\}$.

In this article, we extend these ideas to investigate arbitrary differences δ between elements of the same arbitrary order n in the finite field \mathbb{F}_{p}. More precisely, we prove the following.

Theorem 1.3. Let $\delta \geq 1, n \geq 3$ and $m \geq 3$ be integers such that m is not a power of 2 , and let

$$
\mathcal{B}=\{(1,3),(1,6),(2,4),(2,8),(2,4 m),(3,3),(3,6)\}
$$

Then, for any pair $(\delta, n) \notin \mathcal{B}$, there exists a prime $p \equiv 1(\bmod n), p<(\delta+2)^{n}$, with elements $\alpha, \beta \in \mathbb{F}_{p}$ of order n such that

$$
\alpha-\beta \equiv \delta \quad(\bmod p)
$$

Moreover, all elements of order n in \mathbb{F}_{p} can be effectively determined in terms of δ.
Remark 1.4. We conjecture that the set \mathcal{B} in Theorem 1.3 can be reduced to

$$
\mathcal{B}=\{(1,3),(1,6),(2,4),(2,8),(2,12),(2,24),(3,3),(3,6)\}
$$

Corollary 1.5. Let $\delta \geq 1$ be an integer. If $p \equiv 3(\bmod 4)$ is prime and p is a primitive divisor of $L_{(p-1) / 2}(\delta)$, where $L_{(p-1) / 2}(\delta)$ is the Lucas polynomial of index $(p-1) / 2$ specialized at δ, then there exist primitive roots α and β modulo p such that

$$
\alpha-\beta \equiv \delta \quad(\bmod p)
$$

Moreover, all primitive roots can be effectively determined in terms of δ.

2. General preliminaries

For an integer $m \geq 0$, we define the m th Fermat number as $F_{m}=2^{2^{m}}+1$. The following theorem is due to Lucas [7].

https://daneshyari.com/en/article/5772618

Download Persian Version:
https://daneshyari.com/article/5772618

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Joshua.Harrington@cedarcrest.edu (J. Harrington), lkjone@ship.edu (L. Jones).

