ARTICLE IN PRESS

YJNTH:5757

Journal of Number Theory ••• (••••) •••-•••

Differences between elements of the same order in a finite field

Joshua Harrington^a, Lenny Jones^{b,*}

^a Department of Mathematics, Cedar Crest College, Allentown, PA, USA
^b Department of Mathematics, Shippensburg University, PA, USA

ARTICLE INFO

Article history: Received 23 January 2017 Received in revised form 12 April 2017 Accepted 20 April 2017 Available online xxxx Communicated by D. Goss

MSC: primary 11A07 secondary 11B39, 12Y05

Keywords: Finite field Order Resultant Primitive root Primitive divisor

ABSTRACT

In 1975, Michael Szalay showed that for any prime $p > 10^{19}$ and any integer δ with $1 \leq \delta \leq p - 1$, there exist at least two primitive roots g and h modulo p such that $g - h \equiv \delta$ (mod p). Very recently, Brazelton, Harrington, Kannan and Litman have shown that for any n > 6, there exists a prime $p \equiv 1 \pmod{n}$ for which there are two elements a and b of order n modulo p such that $a - b \equiv 1 \pmod{p}$. In this article, we extend these ideas to investigate arbitrary differences δ between elements of the same arbitrary order n modulo a prime $p \equiv 1 \pmod{n}$. Moreover, we show how all elements of a specific order n can be derived from a single fixed difference δ . Finally, we deduce a result concerning the differences between primitive roots for certain primes $p \equiv 3$ (mod 4).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In 1975, Michael Szalay [9] proved the following theorem.

* Corresponding author.

E-mail addresses: Joshua.Harrington@cedarcrest.edu (J. Harrington), lkjone@ship.edu (L. Jones).

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2017.04.008} 0022-314 X (© 2017 Elsevier Inc. All rights reserved.$

 $Please \ cite \ this \ article \ in \ press \ as: \ J. \ Harrington, \ L. \ Jones, \ Differences \ between \ elements \ of \ the \ same \ order \ in \ a \ finite \ field, \ J. \ Number \ Theory \ (2017), \ http://dx.doi.org/10.1016/j.jnt.2017.04.008$

ARTICLE IN PRESS

J. Harrington, L. Jones / Journal of Number Theory ••• (••••) •••-•••

Theorem 1.1. For all primes $p > 10^{19}$ and any integer δ with $1 \leq \delta \leq p - 1$, there exist at least two primitive roots g and h modulo p such that $g - h \equiv \delta \pmod{p}$.

Very recently, Brazelton, Harrington, Kannan and Litman [2] have broadened the focus from elements of order p-1 to elements of arbitrary order n modulo p, while fixing the difference δ between elements of the same order n at $\delta = 1$. In particular, they have proven the following result.

Theorem 1.2. There exists a prime $p \equiv 1 \pmod{n}$ such that the finite field \mathbb{F}_p contains consecutive elements of order n if and only if $n \notin \{1, 2, 3, 6\}$.

In this article, we extend these ideas to investigate arbitrary differences δ between elements of the same arbitrary order n in the finite field \mathbb{F}_p . More precisely, we prove the following.

Theorem 1.3. Let $\delta \ge 1$, $n \ge 3$ and $m \ge 3$ be integers such that m is not a power of 2, and let

$$\mathcal{B} = \{(1,3), (1,6), (2,4), (2,8), (2,4m), (3,3), (3,6)\}.$$

Then, for any pair $(\delta, n) \notin \mathcal{B}$, there exists a prime $p \equiv 1 \pmod{n}$, $p < (\delta + 2)^n$, with elements $\alpha, \beta \in \mathbb{F}_p$ of order n such that

$$\alpha - \beta \equiv \delta \pmod{p}.$$

Moreover, all elements of order n in \mathbb{F}_p can be effectively determined in terms of δ .

Remark 1.4. We conjecture that the set \mathcal{B} in Theorem 1.3 can be reduced to

 $\mathcal{B} = \{(1,3), (1,6), (2,4), (2,8), (2,12), (2,24), (3,3), (3,6)\}.$

Corollary 1.5. Let $\delta \geq 1$ be an integer. If $p \equiv 3 \pmod{4}$ is prime and p is a primitive divisor of $L_{(p-1)/2}(\delta)$, where $L_{(p-1)/2}(\delta)$ is the Lucas polynomial of index (p-1)/2 specialized at δ , then there exist primitive roots α and β modulo p such that

$$\alpha - \beta \equiv \delta \pmod{p}.$$

Moreover, all primitive roots can be effectively determined in terms of δ .

2. General preliminaries

For an integer $m \ge 0$, we define the *m*th Fermat number as $F_m = 2^{2^m} + 1$. The following theorem is due to Lucas [7].

 $Please \ cite \ this \ article \ in \ press \ as: \ J. \ Harrington, \ L. \ Jones, \ Differences \ between \ elements \ of \ the \ same \ order \ in \ a \ finite \ field, \ J. \ Number \ Theory \ (2017), \ http://dx.doi.org/10.1016/j.jnt.2017.04.008$

Download English Version:

https://daneshyari.com/en/article/5772618

Download Persian Version:

https://daneshyari.com/article/5772618

Daneshyari.com