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Abstract. By using the Rodriguez-Villegas-Mortenson supercongruences, we prove four
supercongruences on sums involving binomial coefficients, which were originally conjec-
tured by Sun. We also confirm a related conjecture of Guo on integer-valued polynomials.
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1 Introduction

In 2003, Rodriguez-Villegas [11] conjectured 22 supercongruences for hypergeometric
Calabi-Yau manifolds of dimension d ≤ 3. For manifolds of dimension d = 1, associated
to certain elliptic curves, four conjectural supercongruences were posed. Mortenson [8, 9]
first proved these four supercongruences by using the Gross-Koblitz formula.

Theorem 1.1 (Rodriguez-Villegas-Mortenson) Suppose p ≥ 5 is a prime. Then
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where
(
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denotes the Legendre symbol and (x)k = x(x+ 1) · · · (x+ k − 1).

Sun [12] introduced the following two kinds of polynomials:
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Note that dn(m) are the Delannoy numbers, which count the number of paths from (0, 0)
to (m,n), only using steps (1, 0), (0, 1) and (1, 1). For more information on Delannoy
numbers, one can refer to [2].

The first aim of this paper is to prove the following result, which was originally con-
jectured by Sun [12, Conjecture 6.11].
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