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Abstract

We give an extension of a theorem of Cesàro from the rational integers to the ring of integers of an arbitrary number field. This
extension is used to generalize Pillai’s function to number fields.
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1. Introduction

A theorem of Cesàro (see e.g. [5], [8, p.127], [17]) states that for every natural number n ∈ N = {1, 2, . . .} and any
arithmetical function f we have

n∑
i=1

f ((i, n)) =
∑
d|n

f (d)ϕ(n/d), (1)

where (i, n) denotes the greatest common divisor of i and n, and ϕ is the Euler totient function. There is in the literature
a large number of generalizations and analogues of Cesàro theorem. For a rich and extensive survey concerning
generalizations of Cesàro theorem the reader is referred to [10]. Since rings of integers in a number field are natural
generalizations of the rational integers, the question natural arises as to whether an analogous statement could be made
for the ring of integers in a number field. Recently, there has been considerable interest in extending arithmetical
identities from the rational integers to a more general setting (see e.g. [11], [13]).

The aim of this paper is to extend Cesàro theorem to the ring OK of integers in a number field K. Instead of
working with elements in OK , where unique factorization can fail, we will work with ideals. As is well known using
ideals in place of elements we can save unique factorization. More precisely, every nonzero ideal n of OK can be
uniquely written in the form n = pα1

1 . . . p
αs
s , where p1, . . . , ps are distinct nonzero prime ideals and α1, . . . , αs are

positive rational integers (see e.g. [14, p.8]).
Unique factorization of ideals in OK permits calculations that are analogous to some familiar manipulations in-

volving ordinary integers. In particular we can define the concept of arithmetical function on the set of ideals of OK .
A real or complex-valued function defined on the set of ideals of the ring of integers in a number field is called an
arithmetical function. As a very simple example, consider a nonzero ideal n of OK , then the generalized Euler totient
function, which is denoted by ϕK(n), is defined to be the order of the multiplicative group of units in the factor ring
OK/n, denoted by U(OK/n), with the convention that ϕK(OK) = 1. That is,

ϕK(n) =
{

1 i f n = OK ,
|U(OK/n)| otherwise.

1



Download English Version:

https://daneshyari.com/en/article/5772628

Download Persian Version:

https://daneshyari.com/article/5772628

Daneshyari.com

https://daneshyari.com/en/article/5772628
https://daneshyari.com/article/5772628
https://daneshyari.com

