ARTICLE IN PRESS

YJNTH:5768

Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Prescribing coefficients of invariant irreducible polynomials

Giorgos Kapetanakis

Faculty of Engineering and Natural Sciences, Sabancı Üniversitesi, Ortha Mahalle, Tuzla 34956, Istanbul, Turkey

A R T I C L E I N F O

Article history: Received 28 March 2017 Received in revised form 24 May 2017 Accepted 25 May 2017 Available online xxxx Communicated by D. Wan

MSC: 11T06 11T23

Keywords: Hansen–Mullen conjecture Finite fields Character sums

ABSTRACT

Let \mathbb{F}_q be the finite field of q elements. We define an action of $\mathrm{PGL}(2,q)$ on $\mathbb{F}_q[X]$ and study the distribution of the irreducible polynomials that remain invariant under this action for lower-triangular matrices. As a result, we describe the possible values of the coefficients of such polynomials and prove that, with a small finite number of possible exceptions, there exist polynomials of given degree with prescribed highdegree coefficients.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let q be a power of the prime number p. By \mathbb{F}_q we denote the finite field of q elements. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,q)$ and $F \in \mathbb{F}_q[X]$. Following previous works [10,22,24], define

$$A \circ F = (bX + d)^{\deg(F)} F\left(\frac{aX + c}{bX + d}\right).$$
(1)

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2017.05.003} 0022-314 X (© 2017 Elsevier Inc. All rights reserved.$

E-mail address: gnkapet@sabanciuniv.edu.

ARTICLE IN PRESS

G. Kapetanakis / Journal of Number Theory ••• (••••) •••-•••

It is clear that the above defines an action of GL(2,q) on $\mathbb{F}_q[X]$.

Recall the usual equivalence relation in GL(2, q), namely for $A, B \in GL(2, q)$,

 $A \sim B : \iff \exists C \in \operatorname{GL}(2,q) \text{ such that } A = C^{-1}BC.$

Further, define the following equivalence relations for $A, B \in GL(2, q)$ and $F, G \in \mathbb{F}_q[X]$.

$$A \sim_q B : \iff A = \lambda B$$
, for some $\lambda \in \mathbb{F}_q^*$ and
 $F \sim_q G : \iff F = \lambda G$, for some $\lambda \in \mathbb{F}_q^*$

It follows that, for $F \in \mathbb{F}_q[X]$ the equivalence class $[F] := \{G \in \mathbb{F}_q[X] \mid G \sim_q F\}$ consists of polynomials of the same degree with F that are all either irreducible or reducible and every such class contains exactly one monic polynomial. Further, the action defined in (1) also induces an action of $\mathrm{PGL}(2,q) = \mathrm{GL}(2,q)/\sim_q$ on $\mathbb{F}_q[X]/\sim_q$, see [24]. For $A \in \mathrm{GL}(2,q)$ and $n \in \mathbb{N}$, we define

$$\mathbb{I}_n^A := \{ P \in \mathbb{I}_n \mid [A \circ P] = [P] \},\$$

where \mathbb{I}_n stands for the set of monic irreducible polynomials of degree n over \mathbb{F}_q . Recently, the estimation of the cardinality of \mathbb{I}_n^A has gained attention [10,22,24]. In a similar manner, we introduce a natural notation abuse for $[A], [B] \in \mathrm{PGL}(2,q)$, i.e.

$$[A] \sim [B] : \iff \exists [C] \in \operatorname{PGL}(2,q) \text{ such that } [A] = [C^{-1}BC].$$

We note that throughout this paper, we will denote polynomials with capital Latin letters and their coefficients with their corresponding lowercase ones with appropriate indices. In particular, if $F \in \mathbb{F}_q[X]$ is of degree n, then $F(X) = \sum_{i=0}^n f_i X^i$, in other words, f_i will stand for the *i*-th coefficient of F. Two well-known results in the study of the distribution of polynomials over \mathbb{F}_q are the following.

Theorem 1.1 (Hansen–Mullen irreducibility conjecture). Let $a \in \mathbb{F}_q$, $n \geq 2$ and fix $0 \leq j < n$. There exists an irreducible polynomial $P(X) = X^n + \sum_{k=0}^{n-1} p_k X^k \in \mathbb{F}_q[X]$ with $p_j = a$, except when

1. j = a = 0 or 2. q is even, n = 2, j = 1, and a = 0.

Theorem 1.2 (Hansen–Mullen primitivity conjecture). Let $a \in \mathbb{F}_q$, $n \geq 2$ and fix $0 \leq j < n$. There exists a primitive polynomial $P(X) = X^n + \sum_{k=0}^{n-1} p_k X^k \in \mathbb{F}_q[X]$ with $p_j = a$, unless one of the following holds.

- 1. j = 0 and $(-1)^n a$ is non-primitive.
- 2. n = 2, j = 1 and a = 0.
- 3. (q, n, j, a) = (4, 3, 2, 0), (4, 3, 1, 0) or (2, 4, 2, 1).

 $\mathbf{2}$

Download English Version:

https://daneshyari.com/en/article/5772629

Download Persian Version:

https://daneshyari.com/article/5772629

Daneshyari.com