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1. Introduction

For a positive definite integral ternary quadratic form
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and an integer n, we define a set R(n, f) = {(z1,22,23) € Z* : f(x1,22,23) = n}, and
r(n, f) = |R(n, f)]. It is well known that r(n, f) is always finite if f is positive definite.
Finding a closed formula for r(n, f) or finding all integers n such that r(n, f) # 0 for an
arbitrary ternary quadratic form f are quite old problems which are still widely open.
As one of the simplest cases, Gauss showed that if f is a sum of three squares, then
r(n, f) is a multiple of the Hurwitz—Kronecker class number. In fact, if the class number
of f is one, that is, every quadratic form which is locally isometric to f is isometric
to it globally, then Minkowski—Siegel formula gives a closed formula for r(n, f). As a
natural modification of the Minkowski-Siegel formula, it was proved in [13] and [17] that
the weighted sum of the representations of quadratic forms in the spinor genus is also
equal to the product of local densities except spinor exceptional integers (see also [16] for
spinor exceptional integers). Hence if the spinor class number g™ (f) of f is one, we also
have a closed formula for r(n, f). As far as the authors know, there is no known closed
formula for r(n, f) except those cases (for some relations between r(n, f)’s, see [10]). If
r(n, f) = r(n, f) for every f’ € gen(f), it is certain that Minkowski—Siegel formula gives
a closed formula for r(n, f). However, Schiemann proved in [15] that for two positive
definite ternary forms f and f’, if r(n, f) = r(n, f’) for every positive integer n, then f
is isometric to f’. Here gen(f) denotes the genus of f, which is set of all positive definite
ternary quadratic forms that are isometric to f over the p-adic integer ring Z,, for every
prime p.

If we consider a proper subset S of positive integers, then it might be possible that
there are non-isometric forms f and f’ such that r(n, f) = r(n, f') for every integer
n € S. In this article, we consider the case when S is the set of perfect squares. We say the
genus of a ternary quadratic form f is indistinguishable by squares if r(n?, f) = r(n?, f')
for every f’ € gen(f) and every integer n. It is obvious that if the genus of f does not
represent any squares of integers, that is, r(n?, f') = 0 for every integer n and every
f' € gen(f), or the class number of f is one, then the genus of f is indistinguishable by
squares. If the genus of f is indistinguishable by squares, then Minkowski-Siegel formula
gives a closed formula for 7(n?, f) for every integer n.

In 2013, Cooper and Lam gave a conjecture in [5] on the representations of squares
by diagonal ternary quadratic forms representing 1. In that article, they proved by using
some g¢-series identities, that for the quadratic form f = 22 + by? + c2? with (b,c) =
(1,1),(1,2), (1,3), (2.2), (3,3),

T(TlQ,f) = H g(b,C,p,OI‘dp(Tl)) H h(b,c,p,ordp(n)),

p|2bc pf2be
where

ord,(n)+1 _ 1 —d ordy,(n) _ 1
h(b, ¢, p, ord,(n)) = pmrr <_f) pmrr =1

p—1 D p—1
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