Journal of Number Theory ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Number Theory

The values of cubic forms at prime arguments

Wenxu Ge*, Feng Zhao

School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China

ARTICLE INFO

Article history:
Received 6 November 2016
Received in revised form 1 March
2017
Accepted 23 May 2017
Available online xxxx
Communicated by the Principal
Editors

MSC: 11P32

11P05 11P55

Keywords:

Diophantine inequalities

Primes

Exceptional set Cubic forms ABSTRACT

Let $\lambda_1,\ \lambda_2,\ \lambda_3,\ \lambda_4,\ \lambda_5$ be non-zero real numbers, not all negative. Let $\mathcal V$ be a well-spaced sequence, $\delta>0$. If λ_1/λ_2 is irrational and algebraic, then we prove that $E(\mathcal V,X,\delta)\ll X^{17/18+2\delta+\varepsilon}$, where $E(\mathcal V,X,\delta)$ denotes the number of $v\in\mathcal V$ with $v\leq X$ such that the inequality $|\lambda_1p_1^3+\lambda_2p_2^3+\lambda_3p_3^3+\lambda_4p_4^3+\lambda_5p_5^3-v|< v^{-\delta}$ has no solution in primes $p_1,\ p_2,\ p_3,\ p_4,\ p_5$. Further, we assume that except for one, all other the ratios $\lambda_k/\lambda_l\ (1\leq k< l\leq 5)$ are irrational and algebraic, then 17/18 can be replaced by 11/12. These improve the earlier results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A formal application of the Hardy–Littlewood method suggests that whenever s and k are natural numbers with $s \geq k+1$, then all large integers n satisfying appropriate local conditions should be represented as the sum of s kth powers of prime numbers. We write

E-mail addresses: gewenxu@ncwu.edu.cn (W. Ge), zhaofeng@ncwu.edu.cn (F. Zhao).

http://dx.doi.org/10.1016/j.jnt.2017.05.014

0022-314X/© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

W. Ge, F. Zhao / Journal of Number Theory ••• (••••) •••-•••

$$\mathcal{N}_5 = \{ n \in \mathbb{N} : n \equiv 1 \pmod{2}, \ n \not\equiv 0, \pm 2 \pmod{9}, \ n \not\equiv 0 \pmod{7} \},$$

and

$$E_5(N) = |\{1 \le n \le N : n \in \mathcal{N}_5 \text{ and } n \notin \mathcal{A}_5\}|,$$

where

$$\mathcal{A}_5 = \{p_1^3 + p_2^3 + p_3^3 + p_4^3 + p_5^3 : p_1, p_2, p_3, p_4, p_5 \text{ are prime numbers}\}.$$

Hua [6] established that almost all numbers in \mathcal{N}_5 can be represented as sums of five cubes of prime numbers. Precisely, Hua proved that $E_5(N) \ll N \log^{-A} N$ for some positive number A. There have been also a series of recent advances (see [9,8,11,16,17]).

Davenport and Heilbronn first considered the Diophantine inequalities. Given $k \geq 1$ and s nonzero real numbers $\lambda_1, \dots, \lambda_s$ (not all in rational ratio, not all negative), we write

$$F(\mathbf{p}) = \sum_{j=1}^{s} \lambda_j p_j^k,$$

where $\mathbf{p} = (p_1, \dots, p_s)$ with each p_j a prime. Various authors have considered the distribution of values of such forms, for example, see [14]. Here we continue in the direction started by Brüdern, Cook and Perelli [1] and followed by Cook and Fox [3], Cook [2], Harman [5] and Cook and Harman [4]. We call a set of positive reals \mathcal{V} a well-spaced set if there is a c > 0 such that

$$u, v \in \mathcal{V}, \quad u \neq v \quad \Rightarrow |u - v| > c.$$

We further assume that

$$|\{v \in \mathcal{V} : 0 \le v \le X\}| \gg X^{1-\varepsilon}.$$

In this paper, let λ_1 , λ_2 , λ_3 , λ_4 , λ_5 be non-zero real numbers, not all negative, let \mathcal{V} be a well-spaced sequence, and let $E(\mathcal{V}, X, \delta)$ denote the number of $v \in \mathcal{V}$ with $v \leq X$ such that the inequality

$$|\lambda_1 p_1^3 + \lambda_2 p_2^3 + \lambda_3 p_3^3 + \lambda_4 p_4^3 + \lambda_5 p_5^3 - v| < v^{-\delta}$$

has no solution in primes p_1 , p_2 , p_3 , p_4 , p_5 .

In [4], Cook and Harman show that if λ_1/λ_2 is irrational and algebraic, then one has

$$E(\mathcal{V}, X, \delta) \ll X^{1 - \frac{2}{3}\rho(3) + 2\delta + \varepsilon} \tag{1.1}$$

for any $\varepsilon > 0$, where $\rho(3) = \frac{1}{14}$, since they use bounds for the exponential sums which arise [10].

2

Download English Version:

https://daneshyari.com/en/article/5772634

Download Persian Version:

https://daneshyari.com/article/5772634

<u>Daneshyari.com</u>