The values of cubic forms at prime arguments

Wenxu Ge*, Feng Zhao
School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China

A R T I C L E I N F O

Article history:

Received 6 November 2016
Received in revised form 1 March 2017
Accepted 23 May 2017
Available online xxxx
Communicated by the Principal Editors

MSC:

11P32
11P05
11P55
Keywords:
Diophantine inequalities
Primes
Exceptional set
Cubic forms

Abstract

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$ be non-zero real numbers, not all negative. Let \mathcal{V} be a well-spaced sequence, $\delta>0$. If $\lambda_{1} / \lambda_{2}$ is irrational and algebraic, then we prove that $E(\mathcal{V}, X, \delta) \ll$ $X^{17 / 18+2 \delta+\varepsilon}$, where $E(\mathcal{V}, X, \delta)$ denotes the number of $v \in \mathcal{V}$ with $v \leq X$ such that the inequality $\mid \lambda_{1} p_{1}^{3}+\lambda_{2} p_{2}^{3}+\lambda_{3} p_{3}^{3}+$ $\lambda_{4} p_{4}^{3}+\lambda_{5} p_{5}^{3}-v \mid<v^{-\delta}$ has no solution in primes p_{1}, p_{2}, p_{3}, p_{4}, p_{5}. Further, we assume that except for one, all other the ratios $\lambda_{k} / \lambda_{l}(1 \leq k<l \leq 5)$ are irrational and algebraic, then $17 / 18$ can be replaced by $11 / 12$. These improve the earlier results. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

A formal application of the Hardy-Littlewood method suggests that whenever s and k are natural numbers with $s \geq k+1$, then all large integers n satisfying appropriate local conditions should be represented as the sum of $s k$ th powers of prime numbers. We write

[^0]http://dx.doi.org/10.1016/j.jnt.2017.05.014 0022-314X/® 2017 Elsevier Inc. All rights reserved.
$$
\mathcal{N}_{5}=\{n \in \mathbb{N}: n \equiv 1(\bmod 2), n \not \equiv 0, \pm 2(\bmod 9), n \not \equiv 0(\bmod 7)\}
$$
and
$$
E_{5}(N)=\mid\left\{1 \leq n \leq N: n \in \mathcal{N}_{5} \text { and } n \notin \mathcal{A}_{5}\right\} \mid
$$
where
$$
\mathcal{A}_{5}=\left\{p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}: p_{1}, p_{2}, p_{3}, p_{4}, p_{5} \text { are prime numbers }\right\} .
$$

Hua [6] established that almost all numbers in \mathcal{N}_{5} can be represented as sums of five cubes of prime numbers. Precisely, Hua proved that $E_{5}(N) \ll N \log ^{-A} N$ for some positive number A. There have been also a series of recent advances (see $[9,8,11,16,17]$).

Davenport and Heilbronn first considered the Diophantine inequalities. Given $k \geq 1$ and s nonzero real numbers $\lambda_{1}, \cdots, \lambda_{s}$ (not all in rational ratio, not all negative), we write

$$
F(\mathbf{p})=\sum_{j=1}^{s} \lambda_{j} p_{j}^{k}
$$

where $\mathbf{p}=\left(p_{1}, \cdots, p_{s}\right)$ with each p_{j} a prime. Various authors have considered the distribution of values of such forms, for example, see [14]. Here we continue in the direction started by Brüdern, Cook and Perelli [1] and followed by Cook and Fox [3], Cook [2], Harman [5] and Cook and Harman [4]. We call a set of positive reals \mathcal{V} a well-spaced set if there is a $c>0$ such that

$$
u, v \in \mathcal{V}, \quad u \neq v \Rightarrow|u-v|>c
$$

We further assume that

$$
|\{v \in \mathcal{V}: 0 \leq v \leq X\}| \gg X^{1-\varepsilon} .
$$

In this paper, let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$ be non-zero real numbers, not all negative, let \mathcal{V} be a well-spaced sequence, and let $E(\mathcal{V}, X, \delta)$ denote the number of $v \in \mathcal{V}$ with $v \leq X$ such that the inequality

$$
\left|\lambda_{1} p_{1}^{3}+\lambda_{2} p_{2}^{3}+\lambda_{3} p_{3}^{3}+\lambda_{4} p_{4}^{3}+\lambda_{5} p_{5}^{3}-v\right|<v^{-\delta}
$$

has no solution in primes $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$.
In [4], Cook and Harman show that if $\lambda_{1} / \lambda_{2}$ is irrational and algebraic, then one has

$$
\begin{equation*}
E(\mathcal{V}, X, \delta) \ll X^{1-\frac{2}{3} \rho(3)+2 \delta+\varepsilon} \tag{1.1}
\end{equation*}
$$

for any $\varepsilon>0$, where $\rho(3)=\frac{1}{14}$, since they use bounds for the exponential sums which arise [10].

https://daneshyari.com/en/article/5772634

Download Persian Version:
https://daneshyari.com/article/5772634

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gewenxu@ncwu.edu.cn (W. Ge), zhaofeng@ncwu.edu.cn (F. Zhao).

