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1. Introduction

Let 7(n) denote the number of positive divisors of the integer n and P(x) € Z[z] be
a polynomial. There are many results on estimating average sums of divisors

N

T (P(n)) (1)

n=1
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one of which was obtained by Erdds [8], who showed that for an irreducible polynomial
P(z) and for any N > 1, we have

N
NlogN <p ZT(P(TL)) <p NlogN.

n=1

Here the implied constants can depend both on the degree and the coefficients of the
polynomial. When P(z) is a quadratic polynomial Hooley [14] and McKee [18,19] ob-
tained asymptotic formulae for the sum (1). When deg P(x) > 3 no asymptotic formulae
for (1) are known. A certain progress in this direction was made by Elsholtz and Tao in
§7 of [7].

When the polynomial P(z) is reducible the behavior is a little bit different. Ingham
[15] considered the additive divisor problem and proved that for a fixed positive integer
q the following asymptotic holds

6
Z T(n)7(n+q) ~ Fa,l(q)Nlog2N,
n<N
as N — oo, where 0,(q) = Zd|q d® for a,q € Z. Later Hooley [14] predicted that
Z 7(n? —1?) = A(r)Nlog> N + O(Nlog N), (2)
n<N

but only recently Dudek [5] provided the exact value of the constant A(1), namely
1/¢(2) = 6/72. The first aim of this paper is to extend Dudek’s work and to find the
exact values of A(r) for any integer r > 1. Actually we find the main term in the
asymptotic formula for (1) for slightly more general polynomials P(n) = (n — b)(n — ¢)
for integers b < ¢, such that b+ c is even.

For integers k > 0 and d > 0 we define

pe(d) =#{0<z<d: =k (mod d)} . (3)

The main result we need for the asymptotic estimate of the average divisor sum (1) for
reducible quadratic polynomials P(z) is the following Theorem, which is of interest of
its own.

Theorem 1. For any integer r > 1 we have the asymptotic formula

6
> pe(N) ~ —Nlog N,
AN

as N — oo.

From Theorem 1 we can deduce our asymptotic result.
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