On integer sequences in product sets

Sai Teja Somu
Department of Mathematics, Indian Institute of Technology Roorkee, 247667, India

A R T I C L E I N F O

Article history:

Received 3 November 2015
Received in revised form 15 April
2017
Accepted 7 June 2017
Available online 17 July 2017
Communicated by S.J. Miller

Keywords:

Product sets
Integer sequences in product sets
Number of consecutive terms of a polynomial
Fibonacci numbers in a product set

Abstract

Let B be a finite set of natural numbers or complex numbers. Product set corresponding to B is defined by $B \cdot B:=\{a b$: $a, b \in B\}$. In this paper we give an upper bound for longest length of consecutive terms of a polynomial sequence present in a product set accurate up to a positive constant. We give a sharp bound on the maximum number of Fibonacci numbers present in a product set when B is a set of natural numbers and a bound which is accurate up to a positive constant when B is a set of complex numbers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In [5] and [4] Zhelezov has proved that if B is a set of natural numbers then the product set corresponding to B cannot contain long arithmetic progressions. In [5] it was shown that the longest length of arithmetic progression is at most $O(|B| \log |B|)$. We try to generalize this result for polynomial sequences. Let $P(x) \in \mathbb{Z}[x]$ be a non-constant polynomial with positive leading coefficient. Let R be the longest length of consecutive terms of the polynomial sequence contained in the product set $B . B$, that is,

$$
R=\max \{n: \text { there exists an } x \in \mathbb{N} \text { such that }\{P(x+1), \cdots, P(x+n)\} \subset B \cdot B\} .
$$

[^0]We prove that R cannot be large for a given non-constant polynomial $P(x)$. In section 3 we consider the question of determining maximum number of Fibonacci and Lucas sequence terms in a product set.

Let $A \times B$ denote the cartesian product of sets A and B. As in [5] we define an auxiliary bipartite graph $G(A, B . B)$ and auxiliary graph $G^{\prime}(A, B . B)$ which are constructed for any sets A and B whenever $A \subset B . B$. The vertex set of $G(A, B . B)$ is a union of two isomorphic copies of B namely $B_{1}=B \times\{1\}$ and $B_{2}=B \times\{2\}$ and vertex set of $G^{\prime}(A, B . B)$ is one isomorphic copy of B namely $B_{1}=B \times\{1\}$. For each $a \in A$ we pick a unique representation $a=b_{1} b_{2}$ where $b_{1}, b_{2} \in B$ and place an edge joining ($b_{1}, 1$), ($b_{2}, 2$) in $G(A, B . B)$ and place an edge joining $\left(b_{1}, 1\right),\left(b_{2}, 1\right)$ in $G^{\prime}(A, B . B)$.

Note that the number of vertices in $G(A, B . B)$ is $2|B|$ where as number of vertices in $G^{\prime}(A, B . B)$ is $|B|$. Number of edges in both $G(A, B . B)$ and $G^{\prime}(A, B . B)$ is $|A|$. Observe that $G^{\prime}(A, B . B)$ can have self loops and $G(A, B . B)$ cannot have self loops and that $G(A, B . B)$ is necessarily a bipartite graph where as $G^{\prime}(A, B . B)$ may not be a bipartite graph.

2. Polynomial sequences

Given a non-constant polynomial $P(x)$ with positive leading coefficient and integer coefficients. Since there can be at most finitely many natural numbers r such that $P(r) \leq$ 0 or $P^{\prime}(r) \leq 0$ there exists an l such that $P(r+l)>0$ and $P^{\prime}(r+l)>0$ for all $r \geq 1$. Hence we can assume without loss of generality that every irreducible factor $g(x)$ of $P(x)$ we have $g(x)>0$ and $g^{\prime}(x)>0 \quad \forall x \geq 1$, as this assumption only effects R by a constant. From now on we will be assuming that for every irreducible divisor $g(x)$ of $P(x), g(x)>0$ and $g^{\prime}(x)>0$ for all natural numbers x. We prove three lemmas in order to obtain an upper bound on R.

From now we let $f(x) \in \mathbb{Z}[x]$ denote an irreducible polynomial divisor of $P(x)$. If $f(x)$ is a polynomial of degree ≥ 2. Let D be the discriminant of $f(x)$. Let d be the greatest common divisor of the set $\{f(n): n \in \mathbb{N}\}$. Let $f_{1}(x)=\frac{f(x)}{d}$. Denote $|D| d^{2}$ by M. If p is a prime divisor of M such that $p^{e} \| M$, that is $p^{e} \mid M$ and $p^{e+1} \nmid M$, then $p^{e} \nmid d$ and hence there exists an a_{p}, such that $f_{1}(x)$ is not divisible by p for all $x \equiv a_{p}\left(\bmod p^{e}\right)$. From Chinese remainder theorem there exists an integer a such that $a \equiv a_{p}\left(\bmod p^{e}\right)$ for all primes p dividing M and hence there exists an a such that $f_{1}(x)$ is relatively prime to M for all $x \equiv a(\bmod M)$.

Lemma 2.1. For sufficiently large R the number of numbers in the set $\left\{f_{1}(r+i): 1 \leq\right.$ $i \leq R, r+i \equiv a \bmod M\}$ with at least one prime factor greater than R is $\geq \frac{R}{3 M}$ for every non-negative integer r.

Proof. Let

$$
Q=\prod_{r+i \equiv a}^{R} f_{1}(r+i)
$$

Download Persian Version:
https://daneshyari.com/article/5772638

Daneshyari.com

[^0]: E-mail address: somuteja@gmail.com.

