

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Elliptic curves with isomorphic groups of points over finite field extensions

Clemens Heuberger^{*,1}, Michela Mazzoli²

Alpen-Adria-Universität Klagenfurt, Austria

ARTICLE INFO

Article history: Received 11 May 2016 Accepted 15 May 2017 Available online 4 August 2017 Communicated by F. Breuer

Keywords: Elliptic curve Rational points Finite field Field extension Isomorphism Isogeny Valuation

ABSTRACT

Consider a pair of ordinary elliptic curves E and E' defined over the same finite field \mathbb{F}_q . Suppose they have the same number of \mathbb{F}_q -rational points, i.e. $|E(\mathbb{F}_q)| = |E'(\mathbb{F}_q)|$. In this paper we characterise for which finite field extensions \mathbb{F}_{q^k} , $k \geq 1$ (if any) the corresponding groups of \mathbb{F}_{q^k} -rational points are isomorphic, i.e. $E(\mathbb{F}_{q^k}) \cong E'(\mathbb{F}_{q^k})$.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Consider a pair of ordinary elliptic curves E and E' defined over the same finite field \mathbb{F}_q , where q is a prime power. Suppose E and E' have the same number of \mathbb{F}_q -rational points, i.e. $|E(\mathbb{F}_q)| = |E'(\mathbb{F}_q)|$. Equivalently, E and E' have the same characteristic polynomial, the same zeta function, hence the same number of \mathbb{F}_{q^k} -rational points for

http://dx.doi.org/10.1016/j.jnt.2017.05.028

 $[\]ast\,$ Corresponding author.

E-mail addresses: clemens.heuberger@aau.at (C. Heuberger), michela.mazzoli@aau.at (M. Mazzoli).

¹ Supported by the Austrian Science Fund (FWF): P 24644-N26.

 $^{^2}$ Supported by the Karl Popper Kolleg "Modeling Simulation Optimization" funded by the Alpen-Adria-Universität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF).

⁰⁰²²⁻³¹⁴X © 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

every finite extension \mathbb{F}_{q^k} of \mathbb{F}_q , $k \geq 1$. This is equivalent to E and E' being \mathbb{F}_q -isogenous – cf. [3, Theorem 1]. In this paper we characterise for which field extensions \mathbb{F}_{q^k} , if any, the corresponding groups of \mathbb{F}_{q^k} -rational points are isomorphic, i.e. $E(\mathbb{F}_{q^k}) \cong E'(\mathbb{F}_{q^k})$.

The question was inspired by an article by C. Wittmann [5]; we have summarised his result for the ordinary case in Proposition 2.1. Wittmann's paper answers the question for k = 1. Our main results are illustrated in Theorem 2.4 and Theorem 2.7. The first theorem reduces the isomorphism problem to a divisibility question for individual k's. In the second theorem, the latter question is reduced to a simple verification of the multiplicative order of some elements, based only on information for k = 1. Combining Theorem 2.4 and Theorem 2.7, we are able to tell for which $k \ge 1$ we have $E(\mathbb{F}_{q^k}) \cong$ $E'(\mathbb{F}_{q^k})$, given only the order of $E(\mathbb{F}_q)$ and the endomorphism rings of E and E'.

2. Isomorphic groups of \mathbb{F}_{q^k} -rational points

Let E be an *ordinary* elliptic curve defined over the finite field \mathbb{F}_q , where q is a prime power. Let τ be the Frobenius endomorphism of E relative to \mathbb{F}_q , namely $\tau(x, y) = (x^q, y^q)$. In the ordinary case, the endomorphism algebra $\mathbb{Q} \otimes \operatorname{End}_{\mathbb{F}_q}(E)$ of E is equal to $\mathbb{Q}(\tau) - \operatorname{cf.}[3, \text{Theorem 2}].$

Since $\mathbb{Q}(\tau)$ is an imaginary quadratic field, it can be written as $\mathbb{Q}(\sqrt{m})$ for some square-free integer m < 0. The ring of integers of $\mathbb{Q}(\sqrt{m})$ is $\mathbb{Z}[\delta]$ where $\delta = \sqrt{m}$ if $m \equiv 2, 3 \pmod{4}$, or $\delta = \frac{1+\sqrt{m}}{2}$ if $m \equiv 1 \pmod{4}$.

Then we can write $\tau = a + b\delta$ for some $a, b \in \mathbb{Z}$. It is well-known that the endomorphism ring of E is an order in $\mathbb{Q}(\tau)$, that is End $(E) \cong \mathcal{O}_g = \mathbb{Z} + g\mathbb{Z}[\delta] = \mathbb{Z} \oplus g\mathbb{Z}\delta$, where g is the *conductor* of the order \mathcal{O}_g . Since $\mathbb{Z}[\tau] = \mathcal{O}_b \subseteq \text{End}(E)$, we have $g \mid b$.

Proposition 2.1 ([5, Lemma 3.1]). Let E/\mathbb{F}_q and E'/\mathbb{F}_q be ordinary elliptic curves s.t. $|E(\mathbb{F}_q)| = |E'(\mathbb{F}_q)|$. Let End $(E) = \mathcal{O}_g$ and End $(E') = \mathcal{O}_{g'}$ be the orders in $\mathbb{Q}(\tau)$ of conductor g and g' respectively, let $\tau = a + b\delta$ as above. Then

$$E(\mathbb{F}_q) \cong E'(\mathbb{F}_q) \quad \Leftrightarrow \quad \gcd(a-1,b/g) = \gcd(a-1,b/g').$$

We note that, since $|E(\mathbb{F}_q)| = q + 1 - \operatorname{Tr}(\tau)$, knowing the order of $E(\mathbb{F}_q)$ is equivalent to knowing the Frobenius endomorphism of E.

As E/\mathbb{F}_q can always be seen as defined over any field extension \mathbb{F}_{q^k} , and the Frobenius endomorphism of E with respect to \mathbb{F}_{q^k} is τ^k , we obtain the following

Corollary 2.2. Let E and E' be as in Proposition 2.1. Fix an integer $k \ge 1$ and write $\tau^k = a_k + b_k \delta$ for suitable $a_k, b_k \in \mathbb{Z}$. Then

$$E(\mathbb{F}_{q^k}) \cong E'(\mathbb{F}_{q^k}) \quad \Leftrightarrow \quad \gcd(a_k - 1, b_k/g) = \gcd(a_k - 1, b_k/g').$$

Download English Version:

https://daneshyari.com/en/article/5772650

Download Persian Version:

https://daneshyari.com/article/5772650

Daneshyari.com