Elliptic curves with isomorphic groups of points over finite field extensions

Clemens Heuberger ${ }^{*, 1}$, Michela Mazzoli ${ }^{2}$
Alpen-Adria-Universität Klagenfurt, Austria

A R T I C L E I N F O

Article history:

Received 11 May 2016
Accepted 15 May 2017
Available online 4 August 2017
Communicated by F. Breuer

Keywords:

Elliptic curve
Rational points
Finite field
Field extension
Isomorphism
Isogeny
Valuation

A B S T R A C T

Consider a pair of ordinary elliptic curves E and E^{\prime} defined over the same finite field \mathbb{F}_{q}. Suppose they have the same number of \mathbb{F}_{q}-rational points, i.e. $\left|E\left(\mathbb{F}_{q}\right)\right|=\left|E^{\prime}\left(\mathbb{F}_{q}\right)\right|$. In this paper we characterise for which finite field extensions $\mathbb{F}_{q^{k}}$, $k \geq 1$ (if any) the corresponding groups of $\mathbb{F}_{q^{k}}$-rational points are isomorphic, i.e. $E\left(\mathbb{F}_{q^{k}}\right) \cong E^{\prime}\left(\mathbb{F}_{q^{k}}\right)$.
© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Consider a pair of ordinary elliptic curves E and E^{\prime} defined over the same finite field \mathbb{F}_{q}, where q is a prime power. Suppose E and E^{\prime} have the same number of \mathbb{F}_{q}-rational points, i.e. $\left|E\left(\mathbb{F}_{q}\right)\right|=\left|E^{\prime}\left(\mathbb{F}_{q}\right)\right|$. Equivalently, E and E^{\prime} have the same characteristic polynomial, the same zeta function, hence the same number of $\mathbb{F}_{q^{k}}$-rational points for

[^0]every finite extension $\mathbb{F}_{q^{k}}$ of $\mathbb{F}_{q}, k \geq 1$. This is equivalent to E and E^{\prime} being $\mathbb{F}_{q^{-}}$-isogenous - cf. [3, Theorem 1]. In this paper we characterise for which field extensions $\mathbb{F}_{q^{k}}$, if any, the corresponding groups of $\mathbb{F}_{q^{k}}$-rational points are isomorphic, i.e. $E\left(\mathbb{F}_{q^{k}}\right) \cong E^{\prime}\left(\mathbb{F}_{q^{k}}\right)$.

The question was inspired by an article by C. Wittmann [5]; we have summarised his result for the ordinary case in Proposition 2.1. Wittmann's paper answers the question for $k=1$. Our main results are illustrated in Theorem 2.4 and Theorem 2.7. The first theorem reduces the isomorphism problem to a divisibility question for individual k 's. In the second theorem, the latter question is reduced to a simple verification of the multiplicative order of some elements, based only on information for $k=1$. Combining Theorem 2.4 and Theorem 2.7, we are able to tell for which $k \geq 1$ we have $E\left(\mathbb{F}_{q^{k}}\right) \cong$ $E^{\prime}\left(\mathbb{F}_{q^{k}}\right)$, given only the order of $E\left(\mathbb{F}_{q}\right)$ and the endomorphism rings of E and E^{\prime}.

2. Isomorphic groups of $\mathbb{F}_{\boldsymbol{q}^{k}}$-rational points

Let E be an ordinary elliptic curve defined over the finite field \mathbb{F}_{q}, where q is a prime power. Let τ be the Frobenius endomorphism of E relative to \mathbb{F}_{q}, namely $\tau(x, y)=$ $\left(x^{q}, y^{q}\right)$. In the ordinary case, the endomorphism algebra $\mathbb{Q} \otimes \operatorname{End}_{\mathbb{F}_{q}}(E)$ of E is equal to $\mathbb{Q}(\tau)-$ cf. [3, Theorem 2].

Since $\mathbb{Q}(\tau)$ is an imaginary quadratic field, it can be written as $\mathbb{Q}(\sqrt{m})$ for some square-free integer $m<0$. The ring of integers of $\mathbb{Q}(\sqrt{m})$ is $\mathbb{Z}[\delta]$ where $\delta=\sqrt{m}$ if $m \equiv 2,3(\bmod 4)$, or $\delta=\frac{1+\sqrt{m}}{2}$ if $m \equiv 1(\bmod 4)$.

Then we can write $\tau=a+b \delta$ for some $a, b \in \mathbb{Z}$. It is well-known that the endomorphism ring of E is an order in $\mathbb{Q}(\tau)$, that is $\operatorname{End}(E) \cong \mathcal{O}_{g}=\mathbb{Z}+g \mathbb{Z}[\delta]=\mathbb{Z} \oplus g \mathbb{Z} \delta$, where g is the conductor of the order \mathcal{O}_{g}. Since $\mathbb{Z}[\tau]=\mathcal{O}_{b} \subseteq \operatorname{End}(E)$, we have $g \mid b$.

Proposition 2.1 ([5, Lemma 3.1]). Let E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{q}$ be ordinary elliptic curves s.t. $\left|E\left(\mathbb{F}_{q}\right)\right|=\left|E^{\prime}\left(\mathbb{F}_{q}\right)\right|$. Let $\operatorname{End}(E)=\mathcal{O}_{g}$ and $\operatorname{End}\left(E^{\prime}\right)=\mathcal{O}_{g^{\prime}}$ be the orders in $\mathbb{Q}(\tau)$ of conductor g and g^{\prime} respectively, let $\tau=a+b \delta$ as above. Then

$$
E\left(\mathbb{F}_{q}\right) \cong E^{\prime}\left(\mathbb{F}_{q}\right) \quad \Leftrightarrow \quad \operatorname{gcd}(a-1, b / g)=\operatorname{gcd}\left(a-1, b / g^{\prime}\right)
$$

We note that, since $\left|E\left(\mathbb{F}_{q}\right)\right|=q+1-\operatorname{Tr}(\tau)$, knowing the order of $E\left(\mathbb{F}_{q}\right)$ is equivalent to knowing the Frobenius endomorphism of E.

As E / \mathbb{F}_{q} can always be seen as defined over any field extension $\mathbb{F}_{q^{k}}$, and the Frobenius endomorphism of E with respect to $\mathbb{F}_{q^{k}}$ is τ^{k}, we obtain the following

Corollary 2.2. Let E and E^{\prime} be as in Proposition 2.1. Fix an integer $k \geq 1$ and write $\tau^{k}=a_{k}+b_{k} \delta$ for suitable $a_{k}, b_{k} \in \mathbb{Z}$. Then

$$
E\left(\mathbb{F}_{q^{k}}\right) \cong E^{\prime}\left(\mathbb{F}_{q^{k}}\right) \quad \Leftrightarrow \quad \operatorname{gcd}\left(a_{k}-1, b_{k} / g\right)=\operatorname{gcd}\left(a_{k}-1, b_{k} / g^{\prime}\right)
$$

https://daneshyari.com/en/article/5772650

Download Persian Version:
https://daneshyari.com/article/5772650

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: clemens.heuberger@aau.at (C. Heuberger), michela.mazzoli@aau.at (M. Mazzoli).
 ${ }^{1}$ Supported by the Austrian Science Fund (FWF): P 24644-N26.
 ${ }^{2}$ Supported by the Karl Popper Kolleg "Modeling Simulation Optimization" funded by the Alpen-AdriaUniversität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF).

