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where D is a central simple division algebra over an algebraic
number field. We show how this number of cusps corresponds
to the class number of D.
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1. Introduction

Let k£ be an algebraic number field and let Oy, be its ring of integers. Consider the
special linear group of (2 x 2)-matrices SLs/k viewed as an algebraic group defined
over k.
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The set of real points of the Q-group Resy gSL2 obtained by restriction of scalars
from k£ to Q will be denoted by G. The symmetric space X which corresponds to
this real semisimple Lie group is a direct product of finitely many copies of the upper
half plane Hs and the three dimensional hyperbolic space Hz. Any arithmetic subgroup
I of SLy(k) acts on X, and this action is properly discontinuous. If T' is torsion free
the quotient space X/I" is a complete Riemannian manifold, non-compact but of finite
volume.

In the case k = Q, it is a classical result that Hy/T for an arithmetic subgroup
' € SLy(Z), can be compactified by adding finitely many points, the so-called cusps.
This might have been known as early as 1880 by Poincaré, though he did not mention
it explicitly (see [BJO6] and [Leh64, Ch. 1]).

This construction was extended to the general case of an arbitrary algebraic number
field to arithmetic subgroups I' C SL2(Oy). For example Siegel shows as a decisive result
in [Sie61, Prop. 20| that the number of cusps which are added to compactify X/SLs(O)
equals hy, the class number of k.

In terms of the underlying algebraic group SLs/k this number of cusps can be inter-
preted as the number of T'-conjugacy classes of proper parabolic k-subgroups of SLs(k).

The situation changes quite a bit and presents interesting phenomena if one considers
the special linear group of (2 x 2)-matrices with entries in a finite-dimensional central
simple division algebra D over k and arithmetic subgroups originating from maximal
orders in D. More precisely, the algebraic k-group G = SL2(D)/k is simple, simply-
connected and of k-rank equal to 1. Its set of k-points will be denoted by Gj. For every
maximal order A in D, G5 := SLy(A) is an arithmetic subgroup of Gy.

The number of cusps ¢s(Gp) of the subgroup G, is defined as the cardinality of
the double quotient Gx\Gy /Py, where P is a (any) proper parabolic k-subgroup of G.
This double quotient, respectively its cardinality, is the main subject of this article.! In
[Bor63, Prop. 7.5] Borel shows quite generally that cs(Ga) equals the class number of
the algebraic group P with respect to the lattice induced by A.?

The calculation of the number of cusps of a maximal order A in D is split into two
cases, depending on the arithmetic of D:

e D is totally definite, i.e. D, = H the Hamiltonian quaternions for all infinite places
v of k.
e D is not totally definite.

If D is not totally definite, one obtains that ¢s(Ga) = hp, where hp is the number of
isomorphism classes of left A-ideals in D for any maximal order A in D. In particular,
it is independent of the choice of maximal order A in D. This result was obtained by

! Note that the number of cusps equals the number of boundary components in the Borel-Serre compact-
ification, and is therefore important in the calculation of the cohomology groups of A.

2 A thorough study of class numbers can be found in [PR94, Chapter 5 and 8].
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