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It is the aim of this article to give a detailed calculation of 
the number of cusps of an arithmetic subgroup of SL2(D)
where D is a central simple division algebra over an algebraic 
number field. We show how this number of cusps corresponds 
to the class number of D.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let k be an algebraic number field and let Ok be its ring of integers. Consider the 
special linear group of (2 × 2)-matrices SL2/k viewed as an algebraic group defined 
over k.
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The set of real points of the Q-group Resk/QSL2 obtained by restriction of scalars 
from k to Q will be denoted by G∞. The symmetric space X which corresponds to 
this real semisimple Lie group is a direct product of finitely many copies of the upper 
half plane H2 and the three dimensional hyperbolic space H3. Any arithmetic subgroup 
Γ of SL2(k) acts on X, and this action is properly discontinuous. If Γ is torsion free 
the quotient space X/Γ is a complete Riemannian manifold, non-compact but of finite 
volume.

In the case k = Q, it is a classical result that H2/Γ for an arithmetic subgroup 
Γ ⊂ SL2(Z), can be compactified by adding finitely many points, the so-called cusps. 
This might have been known as early as 1880 by Poincaré, though he did not mention 
it explicitly (see [BJ06] and [Leh64, Ch. 1]).

This construction was extended to the general case of an arbitrary algebraic number 
field to arithmetic subgroups Γ ⊂ SL2(Ok). For example Siegel shows as a decisive result 
in [Sie61, Prop. 20] that the number of cusps which are added to compactify X/SL2(Ok)
equals hk, the class number of k.

In terms of the underlying algebraic group SL2/k this number of cusps can be inter-
preted as the number of Γ-conjugacy classes of proper parabolic k-subgroups of SL2(k).

The situation changes quite a bit and presents interesting phenomena if one considers 
the special linear group of (2 × 2)-matrices with entries in a finite-dimensional central 
simple division algebra D over k and arithmetic subgroups originating from maximal 
orders in D. More precisely, the algebraic k-group G = SL2(D)/k is simple, simply-
connected and of k-rank equal to 1. Its set of k-points will be denoted by Gk. For every 
maximal order Λ in D, GΛ := SL2(Λ) is an arithmetic subgroup of Gk.

The number of cusps cs(GΛ) of the subgroup GΛ is defined as the cardinality of 
the double quotient GΛ\Gk/Pk, where P is a (any) proper parabolic k-subgroup of G. 
This double quotient, respectively its cardinality, is the main subject of this article.1 In 
[Bor63, Prop. 7.5] Borel shows quite generally that cs(GΛ) equals the class number of 
the algebraic group P with respect to the lattice induced by Λ.2

The calculation of the number of cusps of a maximal order Λ in D is split into two 
cases, depending on the arithmetic of D:

• D is totally definite, i.e. Dv
∼= H the Hamiltonian quaternions for all infinite places 

v of k.
• D is not totally definite.

If D is not totally definite, one obtains that cs(GΛ) = hD, where hD is the number of 
isomorphism classes of left Λ-ideals in D for any maximal order Λ in D. In particular, 
it is independent of the choice of maximal order Λ in D. This result was obtained by 

1 Note that the number of cusps equals the number of boundary components in the Borel–Serre compact-
ification, and is therefore important in the calculation of the cohomology groups of Λ.
2 A thorough study of class numbers can be found in [PR94, Chapter 5 and 8].
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