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The number of partitions of n wherein even parts are distinct 
and odd parts are unrestricted, often denoted by ped(n), 
has been the subject of many recent studies. In this paper, 
the author provides an efficient linear recurrence relation 
for ped(n). A simple criterion for deciding whether ped(n)
is odd or even is given as a corollary of this result. Some 
connections with partitions into parts not congruent to 2
(mod 4), overpartitions and partitions into distinct parts are 
presented in this context.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let ped(n) be the function which enumerates the number of partitions of n wherein 
even parts are distinct and odd parts are unrestricted. The generating function for ped(n),

∞∑
n=0

ped(n)qn = (q4; q4)∞
(q; q)∞

,
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was discussed in [1]. This is well known and appears in the following classic identity of 
Lebesgue

∞∑
n=0

(−q; q)n
(q; q)n

q
(n+1

2
)
= (−q2; q2)∞(−q; q)∞ = (q4; q4)∞

(q; q)∞
,

where

(a; q)n =
{

1, for n = 0,
(1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1), for n > 0

is the q-shifted factorial and

(a; q)∞ = lim
n→∞

(a; q)n.

Because the infinite product (a; q)∞ diverges when a �= 0 and |q| � 1, whenever (a; q)∞
appears in a formula, we shall assume that |q| < 1.

We remark that the sequence {ped(n)}n�0 is well known and can be seen in [17, 
A001935] together with other combinatorial interpretations. Recently, Andrews, Hirsch-
horn and Sellers [4], Chen [5], Cui and Gu [7], Hirschhorn and Sellers [11] and Xia [18]
obtained many interesting congruences modulo 2, 3, 4, 6, 8 and 12 for ped(n).

According to Fink, Guy and Krusemeyer [9], the numbers of partitions of n wherein 
even parts are distinct and odd parts are unrestricted satisfy Euler’s recurrence relation 
for the partition function p(n) unless n is four times a generalized pentagonal number, 
i.e.,

∞∑
j=−∞

(−1)kped(n− j(3j + 1)/2) =
{

(−1)k, if n = 2k(3k + 1), k ∈ Z,

0, otherwise.
(1)

In this paper, motivated by these results, we provide new recurrence relations for 
ped(n) that involve the triangular numbers, i.e.,

Tk = k(k + 1)/2, k ∈ N0.

Theorem 1.1. For n � 0,

∞∑
j=0

(−1)�j/2�ped(n− Tj) =
{

1, if n = 2Tk, k ∈ N0,

0, otherwise.

A more efficient recurrence relation for ped(n) is given by the following result.
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