New relations for the number of partitions with distinct even parts

Mircea Merca
Department of Mathematics, University of Craiova, Craiova, DJ 200585 Romania

A R T I C L E I N F O

Article history:

Received 3 September 2016
Received in revised form 31
December 2016
Accepted 31 December 2016
Available online 10 February 2017
Communicated by D. Goss

MSC:

11P81
11P83
05A17

Abstract

The number of partitions of n wherein even parts are distinct and odd parts are unrestricted, often denoted by $\operatorname{ped}(n)$, has been the subject of many recent studies. In this paper, the author provides an efficient linear recurrence relation for $\operatorname{ped}(n)$. A simple criterion for deciding whether $\operatorname{ped}(n)$ is odd or even is given as a corollary of this result. Some connections with partitions into parts not congruent to 2 $(\bmod 4)$, overpartitions and partitions into distinct parts are presented in this context.

© 2017 Elsevier Inc. All rights reserved.

Keywords:
Integer partitions
Overpartitions
Partition congruences

1. Introduction

Let $\operatorname{ped}(n)$ be the function which enumerates the number of partitions of n wherein even parts are distinct and odd parts are unrestricted. The generating function for $p e d(n)$,

$$
\sum_{n=0}^{\infty} \operatorname{ped}(n) q^{n}=\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}}
$$

[^0]was discussed in [1]. This is well known and appears in the following classic identity of Lebesgue
$$
\sum_{n=0}^{\infty} \frac{(-q ; q)_{n}}{(q ; q)_{n}} q^{\binom{n+1}{2}}=\left(-q^{2} ; q^{2}\right)_{\infty}(-q ; q)_{\infty}=\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}}
$$
where
\[

(a ; q)_{n}= $$
\begin{cases}1, & \text { for } n=0 \\ (1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right), & \text { for } n>0\end{cases}
$$
\]

is the q-shifted factorial and

$$
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}
$$

Because the infinite product $(a ; q)_{\infty}$ diverges when $a \neq 0$ and $|q| \geqslant 1$, whenever $(a ; q)_{\infty}$ appears in a formula, we shall assume that $|q|<1$.

We remark that the sequence $\{\operatorname{ped}(n)\}_{n \geqslant 0}$ is well known and can be seen in [17, A001935] together with other combinatorial interpretations. Recently, Andrews, Hirschhorn and Sellers [4], Chen [5], Cui and Gu [7], Hirschhorn and Sellers [11] and Xia [18] obtained many interesting congruences modulo $2,3,4,6,8$ and 12 for $\operatorname{ped}(n)$.

According to Fink, Guy and Krusemeyer [9], the numbers of partitions of n wherein even parts are distinct and odd parts are unrestricted satisfy Euler's recurrence relation for the partition function $p(n)$ unless n is four times a generalized pentagonal number, i.e.,

$$
\sum_{j=-\infty}^{\infty}(-1)^{k} \operatorname{ped}(n-j(3 j+1) / 2)= \begin{cases}(-1)^{k}, & \text { if } n=2 k(3 k+1), k \in \mathbb{Z} \tag{1}\\ 0, & \text { otherwise }\end{cases}
$$

In this paper, motivated by these results, we provide new recurrence relations for $\operatorname{ped}(n)$ that involve the triangular numbers, i.e.,

$$
T_{k}=k(k+1) / 2, \quad k \in \mathbb{N}_{0}
$$

Theorem 1.1. For $n \geqslant 0$,

$$
\sum_{j=0}^{\infty}(-1)^{\lceil j / 2\rceil} \operatorname{ped}\left(n-T_{j}\right)= \begin{cases}1, & \text { if } n=2 T_{k}, \quad k \in \mathbb{N}_{0} \\ 0, & \text { otherwise } .\end{cases}
$$

A more efficient recurrence relation for $\operatorname{ped}(n)$ is given by the following result.

https://daneshyari.com/en/article/5772662

Download Persian Version:
https://daneshyari.com/article/5772662

Daneshyari.com

[^0]: E-mail address: mircea.merca@profinfo.edu.ro.

