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It is the main purpose of this paper to study shortened recur-
rence relations for generalized Bernoulli numbers and polyno-
mials attached to χ, χ being a primitive Dirichlet character, in 
which some of the preceding numbers or polynomials are com-
pletely excluded. As a result, we are able to establish several 
kinds of such type recurrences by generalizing some known 
identities on classical Bernoulli numbers and polynomials 
such as Saalschütz–Gelfand and von Ettingshausen–Stern’s 
formulas. Furthermore, we discuss shortened recurrence re-
lations for special values of the Riemann zeta and its allied 
functions.
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1. Introduction

Let Bn and Bn(x), n = 0, 1, 2, ..., be the classical Bernoulli numbers and polynomials 
defined by the generating functions

F(t) := t

et − 1 =
∞∑

n=0
Bn

tn

n! , |t| < 2π; (1.1)

F(t, x) := text

et − 1 =
∞∑

n=0
Bn(x) t

n

n! , |t| < 2π, (1.2)

respectively.
It is easy to see that B0 = 1, B2k+1 = 0 and (−1)k−1B2k > 0 for all k ≥ 1. Further, 

from the relation F(t, x) = F(t)ext, it is possible to express Bn(x) as

Bn(x) =
n∑

i=0

(
n

i

)
Bix

n−i.

Various types of linear recurrence relations for these numbers and polynomials have 
been developed over the years (cf. [15,12,9]). Among them, the most basic ones are

n−1∑
i=0

(
n

i

)
Bi+1

i + 1 + 1
n + 1 = 0 (n ≥ 1); (1.3)

n−1∑
i=0

(
n

i

)
Bi+1(x)
i + 1 + 1

n + 1 = xn (n ≥ 1). (1.4)

These identities are easily obtained by expanding both sides of each of the functional 
relations F(t)(et − 1) = t and F(t, x)(et − 1) = text into the Maclaurin power series and 
then comparing the coefficients of tn+1 on both sides, respectively.

Identity (1.3) involves all the consecutive Bernoulli numbers B1, B2, ..., Bn. In contrast 
to this, the following shortened (or incomplete) recurrence relation was discovered by 
Saalschütz [14], and later by M.B. Gelfand [8]:

k∑
i=0

(
k

i

)
Bm+1+i

m + 1 + i
+ (−1)k+m

m∑
j=0

(
m

j

)
Bk+1+j

k + 1 + j
= (−1)m+1

k + m + 1

(
k + m

k

)−1

, (1.5)

which is valid for arbitrary integers k, m ≥ 0. The most remarkable feature of (1.5) is 
that the first min{k, m} Bernoulli numbers are completely missing.

The study of such type recurrence relations has a long and interesting history, and it 
must go back to von Ettingshausen [21] in 1827 and Stern [18] in 1878. Indeed, they first 
discovered the following surprising and unusual formula that involves only the second 
half of Bernoulli numbers up to B2m+1:
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