Shortened recurrence relations for generalized Bernoulli numbers and polynomials

Takashi Agoh
Department of Mathematics, Tokyo University of Science, Noda, Chiba 278-8510, Japan

A R T I C L E I N F O

Article history

Received 6 September 2016
Received in revised form 6 December 2016
Accepted 6 December 2016
Available online xxxx
Communicated by D. Goss
Dedicated to Ladislav Skula on the occasion of his 80th birthday

MSC:

11B37
11B68
11M06
11M35
Keywords:
Bernoulli numbers and polynomials
Recurrence relations
Saalschütz-Gelfand's formula
Von Ettingshausen-Stern's formula
Riemann zeta-function
Dirichlet L-series

Abstract

It is the main purpose of this paper to study shortened recurrence relations for generalized Bernoulli numbers and polynomials attached to χ, χ being a primitive Dirichlet character, in which some of the preceding numbers or polynomials are completely excluded. As a result, we are able to establish several kinds of such type recurrences by generalizing some known identities on classical Bernoulli numbers and polynomials such as Saalschütz-Gelfand and von Ettingshausen-Stern's formulas. Furthermore, we discuss shortened recurrence relations for special values of the Riemann zeta and its allied functions.

© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let B_{n} and $B_{n}(x), n=0,1,2, \ldots$, be the classical Bernoulli numbers and polynomials defined by the generating functions

$$
\begin{align*}
\mathcal{F}(t) & :=\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}, \quad|t|<2 \pi \tag{1.1}\\
\mathcal{F}(t, x) & :=\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad|t|<2 \pi \tag{1.2}
\end{align*}
$$

respectively.
It is easy to see that $B_{0}=1, B_{2 k+1}=0$ and $(-1)^{k-1} B_{2 k}>0$ for all $k \geq 1$. Further, from the relation $\mathcal{F}(t, x)=\mathcal{F}(t) e^{x t}$, it is possible to express $B_{n}(x)$ as

$$
B_{n}(x)=\sum_{i=0}^{n}\binom{n}{i} B_{i} x^{n-i}
$$

Various types of linear recurrence relations for these numbers and polynomials have been developed over the years (cf. [15, 12,9]). Among them, the most basic ones are

$$
\begin{align*}
& \sum_{i=0}^{n-1}\binom{n}{i} \frac{B_{i+1}}{i+1}+\frac{1}{n+1}=0 \quad(n \geq 1) \tag{1.3}\\
& \sum_{i=0}^{n-1}\binom{n}{i} \frac{B_{i+1}(x)}{i+1}+\frac{1}{n+1}=x^{n} \quad(n \geq 1) \tag{1.4}
\end{align*}
$$

These identities are easily obtained by expanding both sides of each of the functional relations $\mathcal{F}(t)\left(e^{t}-1\right)=t$ and $\mathcal{F}(t, x)\left(e^{t}-1\right)=t e^{x t}$ into the Maclaurin power series and then comparing the coefficients of t^{n+1} on both sides, respectively.

Identity (1.3) involves all the consecutive Bernoulli numbers $B_{1}, B_{2}, \ldots, B_{n}$. In contrast to this, the following shortened (or incomplete) recurrence relation was discovered by Saalschütz [14], and later by M.B. Gelfand [8]:

$$
\begin{equation*}
\sum_{i=0}^{k}\binom{k}{i} \frac{B_{m+1+i}}{m+1+i}+(-1)^{k+m} \sum_{j=0}^{m}\binom{m}{j} \frac{B_{k+1+j}}{k+1+j}=\frac{(-1)^{m+1}}{k+m+1}\binom{k+m}{k}^{-1} \tag{1.5}
\end{equation*}
$$

which is valid for arbitrary integers $k, m \geq 0$. The most remarkable feature of (1.5) is that the first $\min \{k, m\}$ Bernoulli numbers are completely missing.

The study of such type recurrence relations has a long and interesting history, and it must go back to von Ettingshausen [21] in 1827 and Stern [18] in 1878. Indeed, they first discovered the following surprising and unusual formula that involves only the second half of Bernoulli numbers up to $B_{2 m+1}$:

https://daneshyari.com/en/article/5772669

Download Persian Version:
https://daneshyari.com/article/5772669

Daneshyari.com

[^0]: E-mail address: agoh_takashi@ma.noda.tus.ac.jp.

