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We utilize false theta function results of Nathan Fine to 
discover four new partition identities involving weights. 
These relations connect Göllnitz–Gordon type partitions and 
partitions with distinct odd parts, partitions into distinct 
parts and ordinary partitions, and partitions with distinct 
odd parts where the smallest positive integer that is not a 
part of the partition is odd and ordinary partitions subject 
to some initial conditions, respectively. Some of our weights 
involve new partition statistics, one is defined as the number 
of different odd parts of a partition larger than or equal to 
a given value and another one is defined as the number of 
different even parts larger than the first integer that is not a 
part of the partition.
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1. Introduction

A partition, π = (λ1, λ2, . . . ), is a finite sequence of non-increasing positive integers. 
Let ν(π) be the number of elements of π. These elements, λi for i ∈ {1, . . . , ν(π)}, are 
called parts of the partition π. The norm of a partition π, denoted |π|, is defined as the 
sum of all its parts. We call a partition π a partition of n if |π| = n. Conventionally, we 
define the empty sequence to be the unique partition of zero. Also define νd(π) as the 
number of different parts of π. For example, π = (10, 10, 5, 5, 4, 1) is a partition of 35 
with ν(π) = 6 and νd(π) = 4.

While the study of the classical partition identities goes back to great Euler, the study 
of weighted partition identities is relatively new with many important consequences to be 
discovered. In 1997, Alladi [1] began a systematic study of weighted partition identities. 
Among many interesting results, he proved that

Theorem 1.1 (Alladi, 1997).

(a(1 − b)q; q)n
(aq; q)n

=
∑
π∈Un

aν(π)bνd(π)q|π|, (1.1)

where Un is the set of partitions with the largest part ≤ n.

In (1.1) and in the rest of the paper we use the standard q-Pochhammer symbol 
notations defined in [8,16]. Let L be a non-negative integer, then

(a; q)L :=
L−1∏
i=0

(1 − aqi) and (a; q)∞ := lim
L→∞

(a; q)L.

Theorem 1.1 provides a combinatorial interpretation for the left-hand side product of 
(1.1) as a weighted count of ordinary partitions with a restriction on the largest part. In 
[14], Corteel and Lovejoy elegantly interpreted (1.1) with a = 1 and b = 2,

(−q; q)n
(q; q)n

=
∑
π∈Un

2νd(π)q|π|, (1.2)

in terms of overpartitions.
Also in [1], Alladi discovered and proved a weighted partition identity relating un-

restricted partitions and the Rogers–Ramanujan partitions. Let U be the set of all 
partitions, and let RR be the set of partitions with difference between parts ≥ 2.

Theorem 1.2 (Alladi, 1997). ∑
π∈RR

ω(π)q|π| =
∑
π∈U

q|π|, (1.3)
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