An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five

Miho Aoki ${ }^{\text {a }}$, Yasuhiro Kishi ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Interdisciplinary Faculty of Science and
Engineering, Shimane University, Matsue, Shimane, 690-8504, Japan
${ }^{\text {b }}$ Department of Mathematics, Faculty of Education, Aichi University of Education, Kariya, Aichi, 448-8542, Japan

A R T I C L E I N F O

Article history:

Received 21 October 2016
Received in revised form 30
November 2016
Accepted 13 December 2016
Available online 20 February 2017
Communicated by D. Goss

MSC:

primary 11R11
secondary 11R16, 11R29
Keywords:
Quadratic fields
Quartic fields
Class numbers

A B S T R A C T
We construct a new infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five. Let n be a positive integer that satisfy $n \equiv \pm 3(\bmod 500)$ and $n \not \equiv 0(\bmod 3)$. We prove that 5 divides the class numbers of both $\mathbb{Q}\left(\sqrt{2-F_{n}}\right)$ and $\mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)$, where F_{n} is the nth Fibonacci number.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Some infinite families of quadratic fields with class numbers divisible by a fixed integer N were given by Nagell [15], Ankeny and Chowla [1], Yamamoto [19], Weinberger [18], Gross and Rohrich [5], Ichimura [6] and Louboutin [13]. In the case $N=5$, some results

[^0]are known due to Parry [16], Mestre [14], Sase [17] and Byeon [3]. One of the authors [10], by using the Fibonacci numbers F_{n}, gave an infinite family of imaginary quadratic fields with class numbers divisible by five: the $\mathbb{Q}\left(\sqrt{-F_{n}}\right)$ with $n \equiv 25(\bmod 50)$.

Recently, Komatsu [11,12] and Ito [9] (resp. Iizuka, Konomi and Nakano [7]) gave infinite families of pairs of quadratic fields with both class numbers divisible by 3 (resp. 3,5 or 7). In the present article, by using the Fibonacci numbers F_{n}, we will give an infinite family of pairs of imaginary quadratic fields with both class numbers divisible by 5 .

Theorem. For $n \in \mathcal{N}:=\{n \in \mathbb{N} \mid n \equiv \pm 3(\bmod 500), n \not \equiv 0(\bmod 3)\}$, the class numbers of both $\mathbb{Q}\left(\sqrt{2-F_{n}}\right)$ and $\mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)$ are divisible by 5 . Moreover, the set of pairs $\left\{\left(\mathbb{Q}\left(\sqrt{2-F_{n}}\right), \mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)\right) \mid n \in \mathcal{N}\right\}$ is infinite.

For an algebraic extension K / k, denote the norm map and the trace map of K / k by $N_{K / k}$ and $\operatorname{Tr}_{K / k}$, respectively. For simplicity, we denote N_{K} and Tr_{K} if the base field is $k=\mathbb{Q}$. For a prime number p and an integer m, we denote the greatest exponent μ of p such that $p^{\mu} \mid m$ by $v_{p}(m)$.

2. Certain parametric quartic polynomial

Let $k=\mathbb{Q}(\sqrt{5})$. For an algebraic integer $\alpha \in k$, we consider the polynomial

$$
\begin{equation*}
f(X)=f_{\alpha}(X):=X^{4}-T X^{3}+(N+2) X^{2}-T X+1 \in \mathbb{Z}[X] \tag{2.1}
\end{equation*}
$$

where $T:=\operatorname{Tr}_{k}(\alpha)$ and $N:=N_{k}(\alpha)$. The discriminant of $f(X)$ is $\operatorname{disc}(f)=d_{1}^{2} d_{2}$ with $d_{1}:=T^{2}-4 N$ and $d_{2}:=(N+4)^{2}-4 T^{2}$. Let L be the minimal splitting field of $f(X)$ over \mathbb{Q}. All four complex roots of $f(X)$ are units of L and can be denoted by $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1},|\varepsilon| \geq\left|\varepsilon^{-1}\right|,|\eta| \geq\left|\eta^{-1}\right|, \alpha=\varepsilon+\varepsilon^{-1}, \bar{\alpha}=\eta+\eta^{-1}$, where $\bar{\alpha}$ denotes the Galois conjugate of α (see [2, Lemmas 2.2 and 2.3]). We assume $\alpha \notin \mathbb{Z}, \alpha^{2}-4 \notin \mathbb{Z}^{2}$, $d_{2} \in 5 \mathbb{Q}^{2}$ and $\alpha^{2}-4>0$. The assumptions $\alpha \notin \mathbb{Z}$ and $\alpha^{2}-4 \notin \mathbb{Z}^{2}$ imply that the polynomial $f(X)$ is \mathbb{Q}-irreducible, and we have $\operatorname{Gal}(L / \mathbb{Q}) \simeq C_{4}$ from $d_{2} \in 5 \mathbb{Q}^{2}$ (see [2, Proposition 2.1]). Furthermore, we have $\varepsilon, \eta \in \mathbb{R}$ by the assumption $\alpha^{2}-4>0, d_{2}>0$ and the factorization

$$
\begin{equation*}
f(X)=\left(X^{2}-\alpha X+1\right)\left(X^{2}-\bar{\alpha} X+1\right)=(X-\varepsilon)\left(X-\varepsilon^{-1}\right)(X-\eta)\left(X-\eta^{-1}\right) \tag{2.2}
\end{equation*}
$$

(see [2, Lemma 2.7]). Set $\widetilde{L}=L\left(\zeta_{5}\right)$ where ζ_{5} is a primitive fifth root of unity. Since $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \supset \operatorname{Gal}(\widetilde{L} / k) \simeq C_{2} \times C_{2}$ and $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) / \operatorname{Gal}\left(\widetilde{L} / \mathbb{Q}\left(\zeta_{5}\right)\right) \simeq \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5}\right) / \mathbb{Q}\right) \simeq C_{4}$, we have $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \simeq C_{2} \times C_{4}$. Therefore, $\operatorname{Gal}(\widetilde{L} / \mathbb{Q})$ has three subgroups of order 4 . One of them is isomorphic to $C_{2} \times C_{2}$ that corresponds to the subfield k, the others are isomorphic to C_{4}. Let us denote them by $\langle\tau\rangle\left(\simeq C_{4}\right)$ and $\left\langle\tau^{\prime}\right\rangle\left(\simeq C_{4}\right)$ for some automorphisms $\tau, \tau^{\prime} \in \operatorname{Gal}(\widetilde{L} / \mathbb{Q})$ of order 4 . Note that $\zeta_{5}^{\tau} \neq \zeta_{5}, \zeta_{5}^{4}$, because τ acts trivial

https://daneshyari.com/en/article/5772678

Download Persian Version:

https://daneshyari.com/article/5772678

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: aoki@riko.shimane-u.ac.jp (M. Aoki), ykishi@auecc.aichi-edu.ac.jp (Y. Kishi).

