

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

On zero-sum subsequences of length not exceeding a given number

Chunlin Wang, Kevin Zhao*

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, PR ${\rm China}$

ARTICLE INFO

Article history: Received 12 September 2016 Received in revised form 1 December 2016 Accepted 20 December 2016 Available online 10 February 2017 Communicated by D. Wan

MSC: 11B75 11R27

Keywords: Davenport constant Zero-sum sequence Abelian group

ABSTRACT

Let G be an additive finite abelian group. For a positive integer k, let $\mathbf{s}_{\leq k}(G)$ denote the smallest integer l such that each sequence of length l has a non-empty zero-sum subsequence of length at most k. Among other results, we determine $\mathbf{s}_{\leq k}(G)$ for all finite abelian groups of rank two.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let C_n denote the cyclic group of n elements. Let G be an additive finite abelian group. It is well known that |G| = 1 or $G = C_{n_1} \oplus C_{n_2} \cdots \oplus C_{n_r}$ with $1 < n_1 | n_2 \cdots | n_r$. Then, r(G) = r is the rank of G and the exponent $\exp(G)$ of G is n_r . Let

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2016.12.019} 0022-314 X @ 2017 Elsevier Inc. All rights reserved.$

E-mail addresses: c-l.wang@outlook.com (C. Wang), zhkw-hebei@163.com (K. Zhao).

$$S := g_1 \cdots g_l$$

be a sequence with elements in G. We call S a zero-sum sequence if $g_1 + \cdots + g_l = 0$. The Davenport constant $\mathsf{D}(G)$ is the minimal integer $l \in N$ such that every sequence S over G of length $|S| \ge l$ has a nonempty zero-sum subsequence. Set

$$\mathsf{D}^*(G) := 1 + \sum_{i=1}^r (n_i - 1).$$

Then $\mathsf{D}(G) \ge \mathsf{D}^*(G)$. Let $\eta(G)$ denote the smallest integer $l \in N$ such that every sequence S over G of length $|S| \ge l$ has a nonempty zero-sum subsequence T of length $|T| \le \exp(G)$. In this paper, we investigate a following generalization of $\mathsf{D}(G)$ and $\eta(G)$.

Definition 1. Denote by $s_{\leq k}(G)$ the smallest element $l \in N \cup \{+\infty\}$ such that each sequence of length l has a non-empty zero-sum subsequence of length at most $k \ (k \in N)$.

The constant $\mathbf{s}_{\leq k}(G)$ was introduced by Delorme, Ordaz and Quiroz [2]. It is a special case for a more general definition of zero-sum constant given by Geroldinger, Grynkiewicz and Schmid [5]. It is trivial to see that $\mathbf{s}_{\leq k}(G) = \mathsf{D}(G)$ if $k \geq \mathsf{D}(G)$, $\mathbf{s}_{\leq k}(G) = \eta(G)$ if $k = \exp(G)$ and $\mathbf{s}_{\leq k}(G) = \infty$ if $1 \leq k < \exp(G)$. In general, the problem of determining $\mathbf{s}_{\leq k}(G)$ is not at all trivial. Recently, the exact number of $\mathbf{s}_{\leq 3}(C_2^r)$ is known by the work of Freeze and Schmid [3], namely, $1+2^{r-1}$. Besides its own interesting, Cohen and Zemor [1] pointed out a connection between $\mathbf{s}_{\leq k}(C_2^r)$ and coding theory. In this paper, we shall determine $\mathbf{s}_{\leq k}(G)$ for some groups. Our main results are the following:

Theorem 2. Let $G = C_m \oplus C_n$, where m and n are integers with $1 \leq m|n$. Then

$$\mathsf{s}_{\leq \mathsf{D}(G)-k}(G) = \mathsf{D}(G) + k \text{ for all } k \in [0, m-1].$$

Theorem 3. Let $G = C_2^r$ for some $r \in \mathbb{N}$. Then

$$\mathbf{s}_{\leq r-k}(G) = r+2 \ for \ all \ r-k \in \left[\left\lceil \frac{2r+2}{3} \right\rceil, r\right].$$

2. Preliminaries

In this paper, our notations are coincident with [4,6] and we briefly present some key concepts. Let N denote the set of positive integers and $N_0 = N \cup \{0\}$.

Let $\mathscr{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. The elements of $\mathscr{F}(G)$ are called sequences over G. Let

$$S = g_1 \cdots g_l \in \mathscr{F}(G),$$

366

Download English Version:

https://daneshyari.com/en/article/5772680

Download Persian Version:

https://daneshyari.com/article/5772680

Daneshyari.com