On zero-sum subsequences of length not exceeding a given number

Chunlin Wang, Kevin Zhao *
Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, PR China

A R T I C L E I N F O

Article history:

Received 12 September 2016
Received in revised form 1 December 2016
Accepted 20 December 2016
Available online 10 February 2017
Communicated by D. Wan

MSC:

11B75
11R27

Keywords:

Davenport constant
Zero-sum sequence
Abelian group

A B S T R A C T

Let G be an additive finite abelian group. For a positive integer k, let $\mathbf{s}_{\leq k}(G)$ denote the smallest integer l such that each sequence of length l has a non-empty zero-sum subsequence of length at most k. Among other results, we determine $\mathbf{s}_{\leq k}(G)$ for all finite abelian groups of rank two.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let C_{n} denote the cyclic group of n elements. Let G be an additive finite abelian group. It is well known that $|G|=1$ or $G=C_{n_{1}} \oplus C_{n_{2}} \cdots \oplus C_{n_{r}}$ with $1<n_{1}\left|n_{2} \cdots\right| n_{r}$. Then, $r(G)=r$ is the rank of G and the $\operatorname{exponent} \exp (G)$ of G is n_{r}. Let

[^0]$$
S:=g_{1} \cdots g_{l}
$$
be a sequence with elements in G. We call S a zero-sum sequence if $g_{1}+\cdots+g_{l}=0$. The Davenport constant $\mathrm{D}(G)$ is the minimal integer $l \in N$ such that every sequence S over G of length $|S| \geq l$ has a nonempty zero-sum subsequence. Set
$$
\mathrm{D}^{*}(G):=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

Then $\mathrm{D}(G) \geq \mathrm{D}^{*}(G)$. Let $\eta(G)$ denote the smallest integer $l \in N$ such that every sequence S over G of length $|S| \geq l$ has a nonempty zero-sum subsequence T of length $|T| \leq \exp (G)$. In this paper, we investigate a following generalization of $\mathrm{D}(G)$ and $\eta(G)$.

Definition 1. Denote by $\mathbf{s}_{\leq k}(G)$ the smallest element $l \in N \cup\{+\infty\}$ such that each sequence of length l has a non-empty zero-sum subsequence of length at most $k(k \in N)$.

The constant $\mathbf{s}_{\leq k}(G)$ was introduced by Delorme, Ordaz and Quiroz [2]. It is a special case for a more general definition of zero-sum constant given by Geroldinger, Grynkiewicz and Schmid [5]. It is trivial to see that $\mathbf{s}_{\leq k}(G)=\mathrm{D}(G)$ if $k \geq \mathrm{D}(G), \mathbf{s}_{\leq k}(G)=\eta(G)$ if $k=\exp (G)$ and $\mathbf{s}_{\leq k}(G)=\infty$ if $1 \leq k<\exp (G)$. In general, the problem of determining $\mathbf{s}_{\leq k}(G)$ is not at all trivial. Recently, the exact number of $\mathbf{s}_{\leq 3}\left(C_{2}^{r}\right)$ is known by the work of Freeze and Schmid [3], namely, $1+2^{r-1}$. Besides its own interesting, Cohen and Zemor [1] pointed out a connection between $\mathbf{s}_{\leq k}\left(C_{2}^{r}\right)$ and coding theory. In this paper, we shall determine $\mathbf{s}_{\leq k}(G)$ for some groups. Our main results are the following:

Theorem 2. Let $G=C_{m} \oplus C_{n}$, where m and n are integers with $1 \leq m \mid n$. Then

$$
\mathrm{s}_{\leq \mathrm{D}(G)-k}(G)=\mathrm{D}(G)+k \text { for all } k \in[0, m-1] .
$$

Theorem 3. Let $G=C_{2}^{r}$ for some $r \in \mathbb{N}$. Then

$$
\mathbf{s}_{\leq r-k}(G)=r+2 \text { for all } r-k \in\left[\left\lceil\frac{2 r+2}{3}\right\rceil, r\right] .
$$

2. Preliminaries

In this paper, our notations are coincident with $[4,6]$ and we briefly present some key concepts. Let N denote the set of positive integers and $N_{0}=N \cup\{0\}$.

Let $\mathscr{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. The elements of $\mathscr{F}(G)$ are called sequences over G. Let

$$
S=g_{1} \cdots g_{l} \in \mathscr{F}(G)
$$

https://daneshyari.com/en/article/5772680

Download Persian Version:
https://daneshyari.com/article/5772680

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: c-1.wang@outlook.com (C. Wang), zhkw-hebei@163.com (K. Zhao).

