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along an effective Cartier divisor. The proof is an application
of P. Delgine’s theorem (H. Esnault and M. Kerz, 2012) [4]
on a finiteness of l-adic sheaves with restricted ramification.
By applying our result to a smooth curve over a finite field,
we obtain a function field analogue of the classical Hermite—
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l-adic sheaves

1. Introduction

For a number field F', that is, a finite extension of Q, the Hermite—Minkowski theorem
asserts that there exist only finitely many extensions of the number field F' with given
degree unramified outside a finite set of primes of F' (e.g., [15], Chap. III, Thm. 2.13; [5],
Chap. V, Thm. 2.6). In [5], G. Faltings gave a higher dimensional generalization of this
theorem stated as follows:
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Theorem 1.1 (/5/, Chap. VI, Sect. 2.4; [9], Thm. 2.9). Let X be a connected scheme of
finite type and dominant (e.g., flat) over Spec(Z). Then there exist only finitely many
étale coverings of X with given degree.

Here, an étale covering of X means a finite étale morphism X’ — X. The aim of this
note is to give a “function field” analogue of this theorem. We begin simple observations:

o For a function field F' of one variable over a finite field with characteristic p, the
Artin—Schreier equations produce infinitely many extensions of F' of degree p which
ramify only in a finite set of places (see e.g., [7], Sect. 8.23).

o For a number field F, (the exponents of) the discriminant of an extension of F' has an
upper bound depending on the extension degree and the primes at which it ramifies
([16], Chap. III, Sect. 6, Prop. 13, see also remarks after the proposition). Under the
conditions in the Hermite-Minkowski theorem, namely, the extension degree and a
finite set of primes are given, the discriminants of extensions of F' are automatically
bounded.

Considering these facts together, to obtain a finiteness as above in the case of function
fields we have to restrict ramification.

Now, we present the results in this note more precisely. Let X be a connected and
separated scheme of finite type over a finite field (we call such schemes just varieties in
the following cf. Notation), and X a compactification of X (cf. Sect. 2). For an effective
Cartier divisor D with support |[D| ¢ Z = X \ X, we will introduce the notion of
bounded ramification along D for étale coverings of X (whose ramification locus is in
the boundary Z) in the next section (Definition 2.2). Adopting this notion, we show the
following theorem.

Theorem 1.2 (Theorem 3.4). Let X < X be as above. There exist only finitely many
étale coverings of X with bounded degree and ramification bounded by a given effective
Cartier divisor D with support in Z = X ~ X.

A key ingredient for the proof is (a weak form of) Deligne’s finiteness theorem on
smooth Weil sheaves with bounded ramification [4] (Theorem 3.3).

For an étale covering X’ — X of smooth curves over a finite field, if its degree and
the discriminant are bounded, then the ramification of the covering X’ — X in our sense
is also bounded (Proposition 2.9):

bounded degree & discriminant = bounded ramification.

From this, we obtain an alternative proof of the following well-known theorem:
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