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Tornheim type series and nonlinear Euler sums
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Abstract In this paper, we develop an approach to evaluation of nonlinear Euler sums. The
approach is based on Tornheim type series computations. By the approach, we can obtain some
closed form representations of quadratic and cubic sums in terms of zeta values and linear sums.
Furthermore, we also evaluate several other series involving harmonic numbers. Some interesting
new consequences and illustrative examples are considered.
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1 Introduction

In this paper, the n-th generalized harmonic number of order k, denoted by H
(k)
n , is defined by

H(k)
n :=

n∑
j=1

1

jk
, n, k ∈ N := {1, 2, 3, . . .}, (1.1)

where H
(1)
n = Hn :=

n∑
j=1

1

j
is the n-th harmonic number. For any k ∈ N, we set H

(k)
0 = 0. The

generalized harmonic number converges to the Riemann zeta value ζ(k):

lim
n→∞H(k)

n = ζ(k), � (k) > 1, k ∈ N,

where the Riemann zeta function is defined by (for more details, see for instance, [2, 5, 6])

ζ(s) :=
∞∑
n=1

1

ns
,�(s) > 1.

The classical linear Euler sum is defined by

Sp,q :=
∞∑
n=1

H
(p)
n

nq
=

∞∑
n=1

1

nq

n∑
k=1

1

kp
, (1.2)
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