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Abstract

We study the critical numbers of the Rankin-Selberg convolution of ar-
bitrary pairs of cohomological cuspidal automorphic representations and
we parametrize these critical numbers by certain 1-dimensional subrepre-
sentations attached to the corresponding pair of finite dimensional repre-
sentations of the related general linear groups.

1 Introduction

For arbitrary natural numbers n and m let π and σ denote cuspidal automorphic
representations of GLn(A) and GLm(A) respectively over the adele ring A of
Q. Jacquet, Piatetski-Shapiro and Shalika [4] introduced for such pairs (π, σ)
an L-function L(π, σ, s) which up to a few special cases is an entire function
of the variable s. In analogy with Deligne’s notion of critical values of motivic
L-functions [2] we would like to study the values of L(π, σ, s) at critical numbers
t ∈ n−m

2 + Z and in particular their arithmetic properties. Assuming that π
and σ are cohomological in the case m = n − 1 these critical values are quite
well understood by [7]. See also Januszewski’s contributions [5] for totally real
number fields. The assumption says that there are finite-dimensional irreducible
rational representations Mμ and Mν of GLn and GLm respectively of heighest
weights μ and ν with a certain purity property such that for the infinity compo-
nents π∞ and σ∞ the representations π∞ ⊗Mμ and σ∞ ⊗Mν have non-trivial
relative Lie algebra cohomology, i.e. we have

(1.1) H•(gln,Kn,∞;π∞ ⊗Mμ,C) �= 0

and

(1.2) H•(glm,Km,∞;σ∞ ⊗Mν,C) �= 0,

where for a natural number n as usual gln denotes the Lie algebra of GLn(R),
Kn,∞ = SOn(R)Z

+
n (R) and Z+

n (R) is the subgroup of matrices of positive de-
terminant in the center Zn(R) of GLn(R). For a given weight μ the set of
representations π with this property is usually denoted by Coh(μ). The treat-
ment of the critical values for m = n − 1 relied on the bijection t �→ t + 1

2 in
this case between the set Crit(π∞, σ∞) of critical numbers and the parameter
set Emb(ν, μ̌) of integers s allowing to embed the twists Mν−s = dets ⊗Mν for
ν − s = (ν1 − s, ..., νm − s) into the contragredient Mμ̌ of Mμ considered as
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