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THE DISTRIBUTION OF INTEGERS IN A TOTALLY REAL
CUBIC FIELD

TIANYI MAO

Abstract. Hecke studies the distribution of fractional parts of quadratic ir-
rationals with Fourier expansion of Dirichlet series. This method is generalized
by Behnke and Ash-Friedberg, to study the distribution of the number of to-
tally positive integers of given trace in a general totally real number field of
any degree. When the field is cubic, we show that the asymptotic behavior of
a weighted Diophantine sum is related to the structure of the unit group. The
main term can be expressed in terms of Grössencharacter L-functions.

1. Introduction

The study of the equidistribution of the fractional part of mα for α irrational
and m = 1, 2, . . . running over the rational integers, dates back to Weyl’s work [9]
in 1910. Hecke [8] studied the case when α is a fixed real quadratic irrational. His
key idea is using the Fourier expansion of the Dirichlet series∑

m≥1

(
{mα} − 1

2

)
m−s

to estimate the Diophantine sum

S1(n) =

n∑
m=1

(
{mα} − 1

2

)
.(1.1)

Both Behnke [4] and Ash-Friedberg [1] aim at generalizing Hecke’s result to an
arbitrary totally real field K of degree n. In such cases, the generalization of the
fractional part of mα is the error term in the natural geometric estimate for the
number of totally positive integers of K of a given trace. They form the Dirichlet
series ϕ(s) whose coefficients are these errors. More specifically, let OK be the ring
of integers of K, and let Tr(OK) be generated by κ > 0. For positive multiples a of
κ, let Na denote the number of totally positive integers with trace a. There is the
natural geometric estimate ra of Na derived from the volume of the intersection
in OK ⊗ R of the cone of totally positive elements with the hyperplane defined by
Trα = a. Denote the difference between the true value and the estimate by

Ea = Na − ra.(1.2)

If a is not a multiple of κ, we set Ea = 0. Then we define the Dirichlet series

ϕ(s) =
∑
a>0

Ea

as
.
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