Pairs of quadratic forms over a quadratic field extension

A.S. Sivatski
Departamento de Matemática, Universidade Federal do Rio Grande do Norte, Natal, Brazil

A R T I C L E IN F O

Article history:

Received 12 October 2016
Received in revised form 3 April
2017
Available online xxxx
Communicated by V. Suresh

MSC:

11E04; 11E81

Abstract

Let F be a field of characteristic distinct from $2, L=F(\sqrt{d})$ a quadratic field extension. Let further f and g be quadratic forms over L considered as polynomials in n variables, M_{f}, M_{g} their matrices. We say that the pair (f, g) is a k-pair if there exist $S \in G L_{n}(L)$ such that all the entries of the $k \times k$ upper-left corner of the matrices $S M_{f} S^{t}$ and $S M_{g} S^{t}$ are in F. We give certain criteria to determine whether a given pair (f, g) is a k-pair. We consider the $\operatorname{transfer} \operatorname{cor}_{L(t) / F(t)}$ determined by the $F(t)$-linear map $s: L(t) \rightarrow F(t)$ with $s(1)=0, s(\sqrt{d})=1$, and prove that if $\operatorname{dim} \operatorname{cor}_{L(t) / F(t)}(f+t g)_{a n} \leq 2(n-k)$, then (f, g) is a $\left[\frac{k+1}{2}\right]$-pair. If, additionally, the form $f+t g$ does not have a totally isotropic subspace of dimension $p+1$ over $L(t)$, we show that (f, g) is a $(k-2 p)$-pair. In particular, if the form $f+t g$ is anisotropic, and $\operatorname{dim} \operatorname{cor}_{L(t) / F(t)}(f+t g)_{a n} \leq 2(n-k)$, then (f, g) is a k-pair.

© 2017 Elsevier B.V. All rights reserved.

Let F be a field, char $F \neq 2, d \in F^{*} \backslash F^{* 2}, L=F(\sqrt{d}), V$ an n-dimensional linear space over L. A quadratic form $V \rightarrow L$ over L will be called an L-form. Let further $s: L \rightarrow F$ be the F-linear map determined by $s(1)=0, s(\sqrt{d})=1$. For an L-form $\varphi: V \rightarrow L$ denote by $\operatorname{cor}_{L / F}(\varphi)$ (corestriction) the F-form $V \xrightarrow{\varphi} L \xrightarrow{s} F$, where V is considered as an F-vector space. This $2 n$-dimensional form is usually called the transfer of φ determined by the map $s([6], \mathrm{Ch} .2, \S 5)$. If the field extension L / F is clear from the context, we omit the symbol L / F and simply write $\operatorname{cor}(\varphi)$.

Recall some properties of this transfer. First, it is easy to check, following the definition of the transfer that

$$
\operatorname{cor}_{L / F}(\langle a+b \sqrt{d}\rangle) \simeq\left\langle b,-b N_{L / F}(a+b \sqrt{d})\right\rangle,
$$

if $a, b \in F, b \neq 0$. Moreover, $\operatorname{cor}(\langle a\rangle) \simeq \mathbb{H}$ if $a \in F^{*}$, and $\operatorname{cor}(\langle 0\rangle) \simeq\langle 0,0\rangle$. These equalities permit to compute $\operatorname{cor}(\varphi)$ if one knows a diagonal presentation of φ. In particular, if φ is regular, then so is $\operatorname{cor}(\varphi)$. Furthermore, obviously, the transfer respects the direct sum of the forms, i.e. $\operatorname{cor}\left(\varphi_{1} \perp \varphi_{2}\right) \simeq \operatorname{cor}\left(\varphi_{1}\right) \perp \operatorname{cor}\left(\varphi_{2}\right)$ for any L-forms φ_{1}, φ_{2}. Also there is the projection formula. Namely, let U be a finite-dimensional linear space

[^0]over F. For an F-form $\varphi: U \rightarrow F$ consider the form $\varphi_{L}: U \otimes_{F} L \rightarrow L$ defined in the obvious way. It is easy to verify that $\operatorname{cor}\left(\varphi_{L} \otimes \psi\right) \simeq \varphi \otimes \operatorname{cor} \psi$ for any F-form φ and L-form ψ ([6], Ch. 2, 5.6). Finally, by Elman-Lam's theorem ([3]) the anisotropic part $\operatorname{cor}(\varphi)_{a n}$ of the form $\operatorname{cor}(\varphi)$ is zero if and only if φ is defined over F, i.e. all the coefficients of φ with respect to some basis of V are in F. The following is an easy generalization of the last statement.

Proposition 1. For any $0 \leq k \leq n$ the following two conditions are equivalent:

1) There is a subform $\varphi_{0} \subset \varphi$ such that φ_{0} is defined over F and $\operatorname{dim} \varphi_{0}=k$.
2) $\operatorname{dim} \operatorname{cor}(\varphi)_{a n} \leq 2(n-k)$.

Proof. Recall first that any form ψ over an arbitrary field of characteristic not 2 has a decomposition $\psi \simeq s\langle 0\rangle \perp p \mathbb{H} \perp \psi_{a n}$ with uniquely determined s, p, and (up to isometry) anisotropic part $\psi_{a n}$. Moreover, $s+p$ is exactly the dimension of any maximal totally isotropic subspace of ψ.
$1) \Longrightarrow 2)$ Let $\varphi_{0} \simeq r\langle 0\rangle \perp \varphi_{1}$, where φ_{1} is regular, defined over F, and $r \leq k$. Then $2 r\langle 0\rangle \perp(k-r) \mathbb{H} \simeq$ $\operatorname{cor}\left(\varphi_{0}\right) \subset \operatorname{cor}(\varphi)$. In particular, $(k-r) \mathbb{H} \subset \operatorname{cor}(\varphi)$. Since the form $(k-r) \mathbb{H}$ is regular, we get that $(k-r) \mathbb{H}$ is a direct summand of $\operatorname{cor}(\varphi)$. Hence $\operatorname{cor}(\varphi) \simeq s\langle 0\rangle \perp p \mathbb{H} \perp \operatorname{cor}(\varphi)_{a n}$ for some p, s, where $p \geq k-r$. Since $\operatorname{cor}\left(\varphi_{0}\right) \subset \operatorname{cor}(\varphi)$, and $\operatorname{cor}\left(\varphi_{0}\right)$ has a totally isotropic subspace of dimension $2 r+(k-r)=k+r$, we get that $p+s \geq k+r$. Therefore, $s+2 p=p+(p+s) \geq(k-r)+(k+r)=2 k$. Thus,

$$
\operatorname{dim} \operatorname{cor}(\varphi)_{a n}=\operatorname{dim} \operatorname{cor}(\varphi)-s-2 p=2 n-s-2 p \leq 2(n-k) .
$$

$2) \Longrightarrow 1)$ Assume first that φ is anisotropic and then induct on k. If $k=0$, the claim is obvious. Assume that $k \geq 1$, i.e. the form $\operatorname{cor}(\varphi): V \xrightarrow{\varphi} L \xrightarrow{s} F$ is isotropic. By definition of the transfer this means that there exists a vector $0 \neq v \in V$ such that $\varphi(v) \in F^{*}$. Therefore, $\varphi \simeq\langle\varphi(v)\rangle \perp \widetilde{\varphi}$ for some form $\widetilde{\varphi}$. Since $\operatorname{dim}(\operatorname{cor} \widetilde{\varphi})_{a n}=\operatorname{dim}(\operatorname{cor} \varphi)_{a n} \leq 2(n-1-(k-1))$, we get by the induction hypothesis a form $\widetilde{\varphi}_{0} \subset \widetilde{\varphi}$, where $\widetilde{\varphi}_{0}$ is defined over F, and $\operatorname{dim} \widetilde{\varphi}_{0}=k-1$. Hence we can put $\varphi_{0}=\langle\varphi(v)\rangle \perp \widetilde{\varphi}_{0}$.

In the general case let $\varphi \simeq r\langle 0\rangle \perp m \mathbb{H} \perp \psi$, where ψ is anisotropic. Then $\operatorname{dim} \psi=n-2 m-r$, and

$$
\operatorname{dim}(\operatorname{cor} \psi)_{a n}=\operatorname{dim}(\operatorname{cor} \varphi)_{a n} \leq 2((n-2 m-r)-(k-2 m-r)) .
$$

If $k-2 m-r \geq 0$, then in view of the anisotropic case we get $\psi_{0} \subset \psi$, where the form ψ_{0} is defined over F, and $\operatorname{dim} \psi_{0}=k-2 m-r$. Thus, we can put $\varphi_{0} \simeq r\langle 0\rangle \perp m \mathbb{H} \perp \psi_{0}$. If $k-2 m-r<0$, then we can take any k-dimensional F-subform of $r\langle 0\rangle \perp m \mathbb{H}$ as φ_{0}.

Choosing a basis of V we can consider the form φ as a homogeneous quadratic polynomial $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with coefficients from L. In this situation we will often identify the form φ with its symmetric matrix of the coefficients $M_{\varphi}=\left(a_{i j}\right)$, where $\varphi=\sum_{i, j} a_{i j} x_{i} x_{j}$ with $a_{i j}=a_{j i}$. The equivalent conditions in Proposition 1 mean that there exists a linear change of variables $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) S$, where $S \in G L_{n}(L)$, such that the coefficients at the monomials $x_{i}^{\prime} x_{j}^{\prime},(1 \leq i, j \leq k)$ for the form $\varphi\left(\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) S\right)$ belong to F. In other words, all the entries of the $k \times k$ upper-left corner of the matrix $S M_{\varphi} S^{t}$ are in F.

The main purpose of this paper is to get a generalization of Proposition 1 for a pair of forms. Namely, consider the following question. Let f and g be forms in n variables over L, M_{f}, M_{g} their matrices, and $1 \leq k \leq n$. When does there exist $S \in G L_{n}(L)$ such that all the entries of the $k \times k$ upper-left corners of the matrices $S M_{f} S^{t}$ and $S M_{g} S^{t}$ are in F ? If S exists, the pair of forms (f, g) will be called k-pair, and if $k=n$, the pair (f, g) is said to be defined over F. Also we say that (f, g) is a k-pair if $k \leq 0$. Clearly, if (f, g) is a k-pair, then the form $f+t g$ has a subform of dimension k defined over $F(t)$, so $\operatorname{dim} \operatorname{cor}_{L(t) / F(t)}(f+t g)_{a n} \leq 2(n-k)$ by Proposition 1 .

https://daneshyari.com/en/article/5772730

Download Persian Version:
https://daneshyari.com/article/5772730

Daneshyari.com

[^0]: E-mail address: alexander.sivatski@gmail.com.
 http://dx.doi.org/10.1016/j.jpaa.2017.04.019
 0022-4049/© 2017 Elsevier B.V. All rights reserved.

