ARTICLE IN PRESS

Journal of Pure and Applied Algebra $\bullet \bullet \bullet (\bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet$

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Pairs of quadratic forms over a quadratic field extension

A.S. Sivatski

Departamento de Matemática, Universidade Federal do Rio Grande do Norte, Natal, Brazil

A R T I C L E I N F O

Article history: Received 12 October 2016 Received in revised form 3 April 2017 Available online xxxx Communicated by V. Suresh

MSC: 11E04; 11E81 ABSTRACT

Let F be a field of characteristic distinct from 2, $L = F(\sqrt{d})$ a quadratic field extension. Let further f and g be quadratic forms over L considered as polynomials in n variables, M_f , M_g their matrices. We say that the pair (f,g) is a k-pair if there exist $S \in GL_n(L)$ such that all the entries of the $k \times k$ upper-left corner of the matrices SM_fS^t and SM_gS^t are in F. We give certain criteria to determine whether a given pair (f,g) is a k-pair. We consider the transfer $\operatorname{cor}_{L(t)/F(t)}$ determined by the F(t)-linear map $s : L(t) \to F(t)$ with s(1) = 0, $s(\sqrt{d}) = 1$, and prove that if $\dim \operatorname{cor}_{L(t)/F(t)}(f+tg)_{an} \leq 2(n-k)$, then (f,g) is a $[\frac{k+1}{2}]$ -pair. If, additionally, the form f + tg does not have a totally isotropic subspace of dimension p + 1 over L(t), we show that (f,g) is a (k-2p)-pair. In particular, if the form f + tg is anisotropic, and $\dim \operatorname{cor}_{L(t)/F(t)}(f+tg)_{an} \leq 2(n-k)$, then (f,g) is a k-pair.

© 2017 Elsevier B.V. All rights reserved.

Let F be a field, char $F \neq 2$, $d \in F^* \setminus F^{*2}$, $L = F(\sqrt{d})$, V an *n*-dimensional linear space over L. A quadratic form $V \to L$ over L will be called an L-form. Let further $s : L \to F$ be the F-linear map determined by s(1) = 0, $s(\sqrt{d}) = 1$. For an L-form $\varphi : V \to L$ denote by $\operatorname{cor}_{L/F}(\varphi)$ (corestriction) the F-form $V \xrightarrow{\varphi} L \xrightarrow{s} F$, where V is considered as an F-vector space. This 2*n*-dimensional form is usually called the transfer of φ determined by the map s ([6], Ch. 2, §5). If the field extension L/F is clear from the context, we omit the symbol L/F and simply write $\operatorname{cor}(\varphi)$.

Recall some properties of this transfer. First, it is easy to check, following the definition of the transfer that

$$\operatorname{cor}_{L/F}(\langle a+b\sqrt{d}\rangle)\simeq \langle b,-bN_{L/F}(a+b\sqrt{d})\rangle,$$

if $a, b \in F$, $b \neq 0$. Moreover, $\operatorname{cor}(\langle a \rangle) \simeq \mathbb{H}$ if $a \in F^*$, and $\operatorname{cor}(\langle 0 \rangle) \simeq \langle 0, 0 \rangle$. These equalities permit to compute $\operatorname{cor}(\varphi)$ if one knows a diagonal presentation of φ . In particular, if φ is regular, then so is $\operatorname{cor}(\varphi)$. Furthermore, obviously, the transfer respects the direct sum of the forms, i.e. $\operatorname{cor}(\varphi_1 \perp \varphi_2) \simeq \operatorname{cor}(\varphi_1) \perp \operatorname{cor}(\varphi_2)$ for any *L*-forms φ_1, φ_2 . Also there is the projection formula. Namely, let *U* be a finite-dimensional linear space

Please cite this article in press as: A.S. Sivatski, Pairs of quadratic forms over a quadratic field extension, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.04.019

E-mail address: alexander.sivatski@gmail.com.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jpaa.2017.04.019} 0022-4049 @ 2017 Elsevier B.V. All rights reserved.$

ARTICLE IN PRESS

A.S. Sivatski / Journal of Pure and Applied Algebra • • • (• • • •) • • • - • • •

over F. For an F-form $\varphi : U \to F$ consider the form $\varphi_L : U \otimes_F L \to L$ defined in the obvious way. It is easy to verify that $\operatorname{cor}(\varphi_L \otimes \psi) \simeq \varphi \otimes \operatorname{cor} \psi$ for any F-form φ and L-form ψ ([6], Ch. 2, 5.6). Finally, by Elman–Lam's theorem ([3]) the anisotropic part $\operatorname{cor}(\varphi)_{an}$ of the form $\operatorname{cor}(\varphi)$ is zero if and only if φ is defined over F, i.e. all the coefficients of φ with respect to some basis of V are in F. The following is an easy generalization of the last statement.

Proposition 1. For any $0 \le k \le n$ the following two conditions are equivalent:

- 1) There is a subform $\varphi_0 \subset \varphi$ such that φ_0 is defined over F and dim $\varphi_0 = k$.
- 2) dim $\operatorname{cor}(\varphi)_{an} \leq 2(n-k)$.

Proof. Recall first that any form ψ over an arbitrary field of characteristic not 2 has a decomposition $\psi \simeq s \langle 0 \rangle \perp p \mathbb{H} \perp \psi_{an}$ with uniquely determined s, p, and (up to isometry) anisotropic part ψ_{an} . Moreover, s + p is exactly the dimension of any maximal totally isotropic subspace of ψ .

1) \Longrightarrow 2) Let $\varphi_0 \simeq r\langle 0 \rangle \perp \varphi_1$, where φ_1 is regular, defined over F, and $r \leq k$. Then $2r\langle 0 \rangle \perp (k-r)\mathbb{H} \simeq cor(\varphi_0) \subset cor(\varphi)$. In particular, $(k-r)\mathbb{H} \subset cor(\varphi)$. Since the form $(k-r)\mathbb{H}$ is regular, we get that $(k-r)\mathbb{H}$ is a direct summand of $cor(\varphi)$. Hence $cor(\varphi) \simeq s\langle 0 \rangle \perp p\mathbb{H} \perp cor(\varphi)_{an}$ for some p, s, where $p \geq k-r$. Since $cor(\varphi_0) \subset cor(\varphi)$, and $cor(\varphi_0)$ has a totally isotropic subspace of dimension 2r + (k-r) = k+r, we get that $p+s \geq k+r$. Therefore, $s+2p=p+(p+s) \geq (k-r)+(k+r)=2k$. Thus,

$$\dim \operatorname{cor}(\varphi)_{an} = \dim \operatorname{cor}(\varphi) - s - 2p = 2n - s - 2p \le 2(n - k).$$

2) \Longrightarrow 1) Assume first that φ is anisotropic and then induct on k. If k = 0, the claim is obvious. Assume that $k \ge 1$, i.e. the form $\operatorname{cor}(\varphi) : V \xrightarrow{\varphi} L \xrightarrow{s} F$ is isotropic. By definition of the transfer this means that there exists a vector $0 \ne v \in V$ such that $\varphi(v) \in F^*$. Therefore, $\varphi \simeq \langle \varphi(v) \rangle \perp \widetilde{\varphi}$ for some form $\widetilde{\varphi}$. Since $\dim(\operatorname{cor} \widetilde{\varphi})_{an} = \dim(\operatorname{cor} \varphi)_{an} \le 2(n-1-(k-1))$, we get by the induction hypothesis a form $\widetilde{\varphi}_0 \subset \widetilde{\varphi}$, where $\widetilde{\varphi}_0$ is defined over F, and $\dim \widetilde{\varphi}_0 = k-1$. Hence we can put $\varphi_0 = \langle \varphi(v) \rangle \perp \widetilde{\varphi}_0$.

In the general case let $\varphi \simeq r \langle 0 \rangle \perp m \mathbb{H} \perp \psi$, where ψ is anisotropic. Then dim $\psi = n - 2m - r$, and

$$\dim(\operatorname{cor}\psi)_{an} = \dim(\operatorname{cor}\varphi)_{an} \le 2((n-2m-r)-(k-2m-r)).$$

If $k - 2m - r \ge 0$, then in view of the anisotropic case we get $\psi_0 \subset \psi$, where the form ψ_0 is defined over F, and dim $\psi_0 = k - 2m - r$. Thus, we can put $\varphi_0 \simeq r\langle 0 \rangle \perp m\mathbb{H} \perp \psi_0$. If k - 2m - r < 0, then we can take any k-dimensional F-subform of $r\langle 0 \rangle \perp m\mathbb{H}$ as φ_0 . \Box

Choosing a basis of V we can consider the form φ as a homogeneous quadratic polynomial $\varphi(x_1, \ldots, x_n)$ with coefficients from L. In this situation we will often identify the form φ with its symmetric matrix of the coefficients $M_{\varphi} = (a_{ij})$, where $\varphi = \sum_{i,j} a_{ij} x_i x_j$ with $a_{ij} = a_{ji}$. The equivalent conditions in Proposition 1 mean that there exists a linear change of variables $(x_1, \ldots, x_n) = (x'_1, \ldots, x'_n)S$, where $S \in GL_n(L)$, such that the coefficients at the monomials $x'_i x'_j$, $(1 \le i, j \le k)$ for the form $\varphi((x'_1, \ldots, x'_n)S)$ belong to F. In other words, all the entries of the $k \times k$ upper-left corner of the matrix $SM_{\varphi}S^t$ are in F.

The main purpose of this paper is to get a generalization of Proposition 1 for a *pair* of forms. Namely, consider the following question. Let f and g be forms in n variables over L, M_f , M_g their matrices, and $1 \leq k \leq n$. When does there exist $S \in GL_n(L)$ such that all the entries of the $k \times k$ upper-left corners of the matrices SM_fS^t and SM_gS^t are in F? If S exists, the pair of forms (f,g) will be called k-pair, and if k = n, the pair (f,g) is said to be defined over F. Also we say that (f,g) is a k-pair if $k \leq 0$. Clearly, if (f,g) is a k-pair, then the form f + tg has a subform of dimension k defined over F(t), so dim $\operatorname{cor}_{L(t)/F(t)}(f + tg)_{an} \leq 2(n - k)$ by Proposition 1.

Please cite this article in press as: A.S. Sivatski, Pairs of quadratic forms over a quadratic field extension, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.04.019

Download English Version:

https://daneshyari.com/en/article/5772730

Download Persian Version:

https://daneshyari.com/article/5772730

Daneshyari.com