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In this short article, we compute the classical limits of the quantum toroidal and 
affine Yangian algebras of sln by generalizing our arguments for gl1 from [7] (an 
alternative proof for n > 2 is given in [10]). We also discuss some consequences of 
these results.
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0. Introduction

The primary purpose of this note is to provide proofs for the description of the classical limits of the 
algebras U(n)

q,d and Y(n)
h,β from [4,9]. Here U(n)

q,d and Y(n)
h,β are the quantum toroidal and the affine Yangian 

algebras of sln (if n ≥ 2) or gl1 (if n = 1), while classical limits refer to the limits of these algebras as q → 1
or h → 0, respectively. We also discuss the classical limits of certain constructions for U(n)

q,d .
The case n = 1 has been essentially worked out in [7]. In this note, we follow the same approach to prove 

the n > 1 generalizations. While writing down this note, we found that the n ≥ 3 case has been considered 
in [10] long time ago (to deduce our Theorems 2.1 and 2.2, one needs to combine [10] with [1]). Hence, the 
only essentially new case is n = 2. Meanwhile, we expect our direct arguments to be applicable in some 
other situations of interest.

This paper is organized as follows:
• In Section 1, we recall explicit definitions of the Lie algebras ü(n)

d and ÿ(n)
β , whose universal enveloping 

algebras coincide with the classical limits of U(n)
q,d and Y(n)

h,β . We also recall the notion of n ×n matrix algebras 
over the algebras of difference/differential operators on C× and their central extensions, denoted by d̄(n)

t

and D̄(n)
s , respectively.

• In Section 2, we establish two key isomorphisms relating the classical limit Lie algebras ü(n)
d , ÿ(n)

β to 

the aforementioned Lie algebras d̄(n)
dn , D̄(n)

nβ .
• In Section 3, we discuss the classical limits of the following constructions for U(n)

q,d (n ≥ 2):
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– the vertical and horizontal copies of a quantum affine algebra Uq(ĝln) inside U(n)
q,d from [3],

– the Miki’s automorphism � : U(n)
q,d

∼−→ U
(n)
q,d from [5],

– the commutative subalgebras A(s0, . . . , sn−1) of U(n),+
q,d from [4].

1. Basic constructions

1.1. The quantum toroidal algebra U(n)
q,d and the affine Yangian Y(n)

h,β

For n ∈ N, set [n] := {0, 1, . . . , n − 1} viewed as a set of mod n residues and [n]× := [n]\{0}. For n ≥ 2, 
we set ai,j := 2δi,j − δi,j+1 − δi,j−1 and mi,j := δi,j+1 − δi,j−1 for all i, j ∈ [n].

◦ Given h, β ∈ C, let Y(n)
h,β be the affine Yangian of sln (if n ≥ 2) or gl1 (if n = 1) as considered in [9], where 

it was denoted by Y(n)
β−h,2h,−β−h. These are unital associative C-algebras generated by {x±

i,r, ξi,r}
r∈Z+
i∈[n] (here 

Z+ := {s ∈ Z | s ≥ 0} = N ∪ {0}) and with the defining relations as in [9, Sect. 1.2]. We will list these 
relations only for h = 0, which is of main interest in the current paper.

◦ Given q, d ∈ C
×, let U(n)

q,d be the quantum toroidal algebra of sln (if n ≥ 2) or gl1 (if n = 1) as considered 
in [4] but without the generators q±d1 , q±d2 and with γ±1/2 = q±c/2. These are unital associative C-algebras 
generated by {ei,k, fi,k, hi,k, c}k∈Z

i∈[n] and with the defining relations specified in [4, Sect. 2.1 and 5]. We note 

that algebras U(n)
d
q ,q

2, 1
dq

from [9, Sect. 1.1] are their central quotients.

1.2. The Lie algebra ü(n)
d

In the q → 1 limit, all the defining relations of U(n)
q,d become of Lie type. Therefore, the q → 1 limit 

of U(n)
q,d is isomorphic to the universal enveloping algebra U(ü(n)

d ). The Lie algebra ü(n)
d is generated by 

{ēi,k, f̄i,k, ̄hi,k, ̄c}k∈Z

i∈[n] with c̄ being a central element and the rest of the defining relations (u1–u7.2) to be 
given below in each of the 3 cases of interest: n > 2, n = 2, and n = 1.

• For n > 2, the defining relations are 

[h̄i,k, h̄j,l] = kai,jd
−kmi,jδk,−lc̄, (u1)

[ēi,k+1, ēj,l] = d−mi,j [ēi,k, ēj,l+1], (u2)

[f̄i,k+1, f̄j,l] = d−mi,j [f̄i,k, f̄j,l+1], (u3)

[ēi,k, f̄j,l] = δi,j h̄i,k+l + kδi,jδk,−lc̄, (u4)

[h̄i,k, ēj,l] = ai,jd
−kmi,j ēj,l+k, (u5)

[h̄i,k, f̄j,l] = −ai,jd
−kmi,j f̄j,l+k, (u6)

∑
π∈Σ2

[ēi,kπ(1) , [ēi,kπ(2) , ēi±1,l]] = 0 and [ēi,k, ēj,l] = 0 for j �= i, i± 1, (u7.1)

∑
π∈Σ2

[f̄i,kπ(1) , [f̄i,kπ(2) , f̄i±1,l]] = 0 and [f̄i,k, f̄j,l] = 0 for j �= i, i± 1. (u7.2)
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