ARTICLE IN PRESS

Journal of Pure and Applied Algebra $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet$

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Classical limits of quantum toroidal and affine Yangian algebras

Alexander Tsymbaliuk

Simons Center for Geometry and Physics, Stony Brook, NY 11794, USA

ARTICLE INFO

ABSTRACT

Article history: Received 21 June 2016 Received in revised form 11 January 2017 Available online xxxx Communicated by S. Donkin In this short article, we compute the *classical limits* of the quantum toroidal and affine Yangian algebras of \mathfrak{sl}_n by generalizing our arguments for \mathfrak{gl}_1 from [7] (an alternative proof for n > 2 is given in [10]). We also discuss some consequences of these results.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

The primary purpose of this note is to provide proofs for the description of the classical limits of the algebras $\mathcal{U}_{q,d}^{(n)}$ and $\mathcal{Y}_{h,\beta}^{(n)}$ from [4,9]. Here $\mathcal{U}_{q,d}^{(n)}$ and $\mathcal{Y}_{h,\beta}^{(n)}$ are the quantum toroidal and the affine Yangian algebras of \mathfrak{sl}_n (if $n \geq 2$) or \mathfrak{gl}_1 (if n = 1), while classical limits refer to the limits of these algebras as $q \to 1$ or $h \to 0$, respectively. We also discuss the classical limits of certain constructions for $\mathcal{U}_{a,d}^{(n)}$.

The case n = 1 has been essentially worked out in [7]. In this note, we follow the same approach to prove the n > 1 generalizations. While writing down this note, we found that the $n \ge 3$ case has been considered in [10] long time ago (to deduce our Theorems 2.1 and 2.2, one needs to combine [10] with [1]). Hence, the only essentially new case is n = 2. Meanwhile, we expect our direct arguments to be applicable in some other situations of interest.

This paper is organized as follows:

• In Section 1, we recall explicit definitions of the Lie algebras $\ddot{u}_d^{(n)}$ and $\ddot{y}_{\beta}^{(n)}$, whose universal enveloping algebras coincide with the *classical limits* of $\mathcal{U}_{q,d}^{(n)}$ and $\mathcal{Y}_{h,\beta}^{(n)}$. We also recall the notion of $n \times n$ matrix algebras over the algebras of difference/differential operators on \mathbb{C}^{\times} and their central extensions, denoted by $\bar{\mathfrak{d}}_t^{(n)}$ and $\bar{\mathfrak{D}}_s^{(n)}$, respectively.

• In Section 2, we establish two key isomorphisms relating the *classical limit* Lie algebras $\ddot{u}_d^{(n)}, \ddot{y}_{\beta}^{(n)}$ to the aforementioned Lie algebras $\bar{\mathfrak{d}}_{d^n}^{(n)}, \bar{\mathfrak{D}}_{n\beta}^{(n)}$.

• In Section 3, we discuss the *classical limits* of the following constructions for $\mathcal{U}_{a,d}^{(n)}$ $(n \ge 2)$:

 $E\text{-}mail\ address:\ sashikts@gmail.com.$

 $\label{eq:http://dx.doi.org/10.1016/j.jpaa.2017.02.004 \\ 0022-4049/© 2017 Elsevier B.V. All rights reserved.$

Please cite this article in press as: A. Tsymbaliuk, Classical limits of quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.02.004

JOURNAL OF PURE AND APPLIED ALGEBRA

<u>ARTICLE IN PRESS</u>

- A. Tsymbaliuk / Journal of Pure and Applied Algebra $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet \bullet \bullet \bullet$
- the vertical and horizontal copies of a quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_n)$ inside $\mathfrak{U}_{q,d}^{(n)}$ from [3],
- the Miki's automorphism $\varpi: \mathcal{U}_{q,d}^{(n)} \xrightarrow{\sim} \mathcal{U}_{q,d}^{(n)}$ from [5],
- the commutative subalgebras $\mathcal{A}(s_0, \ldots, s_{n-1})$ of $\mathcal{U}_{a,d}^{(n),+}$ from [4].

1. Basic constructions

1.1. The quantum toroidal algebra $\mathcal{U}_{a,d}^{(n)}$ and the affine Yangian $\mathcal{Y}_{b,\beta}^{(n)}$

For $n \in \mathbb{N}$, set $[n] := \{0, 1, \dots, n-1\}$ viewed as a set of mod n residues and $[n]^{\times} := [n] \setminus \{0\}$. For $n \ge 2$, we set $a_{i,j} := 2\delta_{i,j} - \delta_{i,j+1} - \delta_{i,j-1}$ and $m_{i,j} := \delta_{i,j+1} - \delta_{i,j-1}$ for all $i, j \in [n]$.

• Given $h, \beta \in \mathbb{C}$, let $\mathcal{Y}_{h,\beta}^{(n)}$ be the affine Yangian of \mathfrak{sl}_n (if $n \geq 2$) or \mathfrak{gl}_1 (if n = 1) as considered in [9], where it was denoted by $\mathcal{Y}_{\beta-h,2h,-\beta-h}^{(n)}$. These are unital associative \mathbb{C} -algebras generated by $\{x_{i,r}^{\pm}, \xi_{i,r}\}_{i\in[n]}^{r\in\mathbb{Z}_+}$ (here $\mathbb{Z}_+ := \{s \in \mathbb{Z} \mid s \geq 0\} = \mathbb{N} \cup \{0\}$) and with the defining relations as in [9, Sect. 1.2]. We will list these relations only for h = 0, which is of main interest in the current paper.

• Given $q, d \in \mathbb{C}^{\times}$, let $\mathcal{U}_{q,d}^{(n)}$ be the quantum toroidal algebra of \mathfrak{sl}_n (if $n \geq 2$) or \mathfrak{gl}_1 (if n = 1) as considered in [4] but without the generators $q^{\pm d_1}, q^{\pm d_2}$ and with $\gamma^{\pm 1/2} = q^{\pm c/2}$. These are unital associative \mathbb{C} -algebras generated by $\{e_{i,k}, f_{i,k}, h_{i,k}, c\}_{i \in [n]}^{k \in \mathbb{Z}}$ and with the defining relations specified in [4, Sect. 2.1 and 5]. We note that algebras $\mathcal{U}_{\frac{d}{q}, q^2, \frac{1}{dq}}^{(n)}$ from [9, Sect. 1.1] are their central quotients.

1.2. The Lie algebra $\ddot{u}_d^{(n)}$

In the $q \to 1$ limit, all the defining relations of $\mathcal{U}_{q,d}^{(n)}$ become of *Lie type*. Therefore, the $q \to 1$ limit of $\mathcal{U}_{q,d}^{(n)}$ is isomorphic to the universal enveloping algebra $U(\ddot{u}_d^{(n)})$. The Lie algebra $\ddot{u}_d^{(n)}$ is generated by $\{\bar{e}_{i,k}, \bar{f}_{i,k}, \bar{h}_{i,k}, \bar{c}\}_{i\in[n]}^{k\in\mathbb{Z}}$ with \bar{c} being a central element and the rest of the defining relations (u1–u7.2) to be given below in each of the 3 cases of interest: n > 2, n = 2, and n = 1.

• For n > 2, the defining relations are

$$[\bar{h}_{i,k}, \bar{h}_{j,l}] = k a_{i,j} d^{-km_{i,j}} \delta_{k,-l} \bar{c}, \qquad (u1)$$

$$[\bar{e}_{i,k+1}, \bar{e}_{j,l}] = d^{-m_{i,j}} [\bar{e}_{i,k}, \bar{e}_{j,l+1}], \qquad (u2)$$

$$[\bar{f}_{i,k+1},\bar{f}_{j,l}] = d^{-m_{i,j}}[\bar{f}_{i,k},\bar{f}_{j,l+1}],$$
(u3)

$$[\bar{e}_{i,k},\bar{f}_{j,l}] = \delta_{i,j}\bar{h}_{i,k+l} + k\delta_{i,j}\delta_{k,-l}\bar{c},\tag{u4}$$

$$[\bar{h}_{i,k}, \bar{e}_{j,l}] = a_{i,j} d^{-km_{i,j}} \bar{e}_{j,l+k}, \tag{u5}$$

$$[\bar{h}_{i,k}, \bar{f}_{j,l}] = -a_{i,j}d^{-km_{i,j}}\bar{f}_{j,l+k},$$
(u6)

$$\sum_{\pi \in \Sigma_2} \left[\bar{e}_{i,k_{\pi(1)}}, \left[\bar{e}_{i,k_{\pi(2)}}, \bar{e}_{i\pm 1,l} \right] \right] = 0 \text{ and } \left[\bar{e}_{i,k}, \bar{e}_{j,l} \right] = 0 \text{ for } j \neq i, i \pm 1, \tag{u7.1}$$

$$\sum_{\pi \in \Sigma_{\alpha}} \left[\bar{f}_{i,k_{\pi(1)}}, \left[\bar{f}_{i,k_{\pi(2)}}, \bar{f}_{i\pm 1,l} \right] \right] = 0 \text{ and } \left[\bar{f}_{i,k}, \bar{f}_{j,l} \right] = 0 \text{ for } j \neq i, i \pm 1.$$

$$(u7.2)$$

Please cite this article in press as: A. Tsymbaliuk, Classical limits of quantum toroidal and affine Yangian algebras, J. Pure Appl. Algebra (2017), http://dx.doi.org/10.1016/j.jpaa.2017.02.004

Download English Version:

https://daneshyari.com/en/article/5772814

Download Persian Version:

https://daneshyari.com/article/5772814

Daneshyari.com