Journal of Pure and Applied Algebra • • • (• • • •) • • • - • •

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

A criterion for an abelian variety to be non-simple

R. Auffarth ^{a,*}, H. Lange ^b, A.M. Rojas ^a

^a Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile

^b Mathematisches Institut, Universität Erlangen-Nürnberg, Germany

ARTICLE INFO

Article history: Received 31 August 2015 Received in revised form 7 October 2016 Available online xxxx Communicated by R. Vakil

MSC:

14K02; 14K12; 32G20

ABSTRACT

We give a criterion in terms of period matrices for an arbitrary polarized abelian variety to be non-simple. Several examples are worked out.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let (A, \mathcal{L}) be a complex abelian variety of dimension g with polarization of type $D = \operatorname{diag}(d_1, \ldots, d_g)$ defined by an ample line bundle \mathcal{L} . So $A = V/\Lambda$ where V is a complex vector space of dimension g and Λ is a lattice of maximal rank in \mathbb{C}^g such that with respect to a basis of V and a symplectic basis of Λ , A is given by a period matrix (D Z) with Z in the Siegel upper half space of rank g. The aim of this paper to give a set of equations in the entries of the matrix Z which characterize the fact that (A, \mathcal{L}) is non-simple. These equations are easy to work out for g = 2 and can be given explicitly with the help of a computer program for g = 3.

To be more precise, the polarization induces a bijection

$$\varphi: \mathrm{NS}_{\mathbb{Q}}(A) \to \mathrm{End}_{\mathbb{Q}}^{s}(A)$$

of the rational Néron–Severi group $\operatorname{NS}_{\mathbb{Q}}(A) := \operatorname{NS}(A) \otimes \mathbb{Q} = (\operatorname{Pic}(A)/\operatorname{Pic}^0(A)) \otimes \mathbb{Q}$ with the \mathbb{Q} -vector space $\operatorname{End}_{\mathbb{Q}}^s(A) := \operatorname{End}^s(A) \otimes \mathbb{Q}$ generated by the endomorphisms of A which are symmetric with respect to the Rosati involution of (A, \mathcal{L}) . Now an abelian subvariety X of A corresponds to a symmetric idempotent $\varepsilon_X \in \operatorname{End}_{\mathbb{Q}}^s(A)$. So $\varphi^{-1}(\varepsilon_X)$ is an element of $\operatorname{NS}_{\mathbb{Q}}(A)$. On the other hand, $\operatorname{NS}_{\mathbb{Q}}(A)$ admits an intersection

* Corresponding author.

E-mail addresses: rfauffar@uchile.cl (R. Auffarth), lange@mi.uni-erlangen.de (H. Lange), anirojas@u.uchile.cl (A.M. Rojas).

http://dx.doi.org/10.1016/j.jpaa.2016.10.020

0022-4049/© 2016 Elsevier B.V. All rights reserved.

[‡] Partially supported by FONDECYT Grants 3150171 and 1140507 and CONICYT PIA ACT1415.

R. Auffarth et al. / Journal of Pure and Applied Algebra • • • (• • • •) • • • - • •

product which associates to g elements $\alpha_1, \ldots, \alpha_g \in \mathrm{NS}_{\mathbb{Q}}(A)$ a rational number $(\alpha_1 \cdots \alpha_g)$. Theorem 3.3 is a criterion for an element $\alpha \in \mathrm{NS}_{\mathbb{Q}}(A)$ to be equal to $\varphi^{-1}\varepsilon_X$ for an abelian subvariety X of A in terms of the intersection numbers $(\alpha^r \cdot \mathcal{L}^{g-r})$.

Introducing coordinates of Λ as above and using the fact that

$$NS_{\mathbb{Q}}(A) = H^{1,1}(A) \cap H^{2}(A, \mathbb{Q})$$

we translate the criterion into terms of differential forms which finally gives the above mentioned equations in Theorem 4.1 for the matrix Z. These have been outlined in [1] in the case of a principally polarized abelian variety. For our applications we need however the generalization to an arbitrary polarized abelian variety as we will explain now.

Let G be a finite group acting faithfully on the abelian variety A. Following [3, Section 13.6], this action induces a morphism ρ from the group algebra $\mathbb{Q}[G]$ to the rational endomorphism algebra $\mathrm{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$. Since $\mathbb{Q}[G]$ is a semisimple algebra, it decomposes as a product of simple algebras $Q_1 \times \cdots \times Q_r$. Each Q_i is generated by a central idempotent e_i , and these are in correspondence with the rational irreducible representations of G. By defining $A_i = \rho(me_i)$, where m is an integer such that $\rho(me_i) \in \mathrm{End}(A)$, the so called isotypical decomposition of A is obtained. It is an isogeny $A_1 \times \cdots \times A_r \to A$ where the A_i are abelian subvarieties of A uniquely determined by the simple factors Q_i of the rational group algebra $\mathbb{Q}[G]$.

In an analogous way the factors A_i are decomposed further up to isogeny as $A_i \sim B_i^{n_i}$. This last decomposition for each isotypical factor comes from the decomposition of Q_i as a product of minimal ideals. Therefore here B_i is an abelian subvariety of A_i , not uniquely determined, and $n_i = \frac{\deg \chi_i}{m_i}$, where χ_i is a complex irreducible representation associated to the simple factor Q_i and m_i its Schur index (see [3, Section 13.6]). The decomposition

$$A \sim B_1^{n_1} \times \dots \times B_r^{n_r} \tag{1.1}$$

is called the group algebra decomposition of the G-abelian variety A. Our starting point was the question whether the abelian varieties B_i are simple. Even if A is principally polarized, the induced polarization on B_i is in general not principal. So in order to discuss the simplicity of B_i we need Theorem 4.1 also in the non-principally polarized case. We will outline several examples for this.

In Section 2 we recall and outline some more details about the relation between abelian subvarieties and symmetric idempotents of a polarized abelian variety. Section 3 contains the above criterion in terms of the Néron–Severi group and Section 4 its translation in terms of period matrices. Finally Section 5 contains the examples.

List of Symbols

Acomplex abelian variety \mathcal{L} ample line bundle on A (d_1,\ldots,d_q) type of the line bundle \mathcal{L} Xabelian subvariety of Aexponent of X e_X norm endomorphism of X N_X Rosati involution $\operatorname{End}_{\mathbb{O}}^{s}(A)$ \mathbb{Q} -endomorphisms of A fixed by ' $NS_{\mathbb{O}}(A)$ Néron-Severi group of A tensored with \mathbb{Q} numerical class associated to X in $NS_{\mathbb{Q}}(A)$ δ_X $\frac{1}{e_X}\delta_X$ α_X symmetric idempotent associated to X ε_X

Please cite this article in press as: R. Auffarth et al., A criterion for an abelian variety to be non-simple, J. Pure Appl. Algebra (2016), http://dx.doi.org/10.1016/j.jpaa.2016.10.020

6

Download English Version:

https://daneshyari.com/en/article/5772875

Download Persian Version:

https://daneshyari.com/article/5772875

<u>Daneshyari.com</u>