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We prove coherence theorems for bicategories, pseudofunctors and pseudonatural 
transformations. These theorems boil down to proving the coherence of some 
free (4, 2)-categories. In the case of bicategories and pseudofunctors, existing 
rewriting techniques based on Squier’s Theorem allow us to conclude. In the case 
of pseudonatural transformations this approach only proves the coherence of part 
of the structure, and we use a new rewriting result to conclude. To this end, we 
introduce the notions of white-categories and partial coherence.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

0.1. An overview of coherence theorems

A mathematical structure, such as the notion of monoid or algebra, is often defined in terms of some data 
satisfying relations. In the case of monoids, the data is a set and a binary application, and the relations are 
the associativity and the unit axioms. In category theory, one often considers relations that only hold up to 
isomorphism. One of the simplest example of such a structure is that of monoidal categories, in which the 
product is not associative, but instead there exist isomorphisms αA,B,C : (A ⊗B) ⊗C → A ⊗ (B⊗C). This 
additional data must also satisfy some relation, known as Mac–Lane’s pentagon:

(A⊗ (B ⊗ C)) ⊗D
αA,B⊗C,D

=

A⊗ ((B ⊗ C) ⊗D)
A⊗αB,C,D

((A⊗B) ⊗ C) ⊗D

αA,B,C⊗D

αA⊗B,C,D

A⊗ (B ⊗ (C ⊗D))

(A⊗B) ⊗ (C ⊗D)
αA,B,C⊗D
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The intended purpose of this relation is that, between any two bracketings of A1⊗A2 ⊗ . . .⊗An−1 ⊗An, 
there exists a unique isomorphism constructed from the isomorphisms αA,B,C. This statement was made 
precise and proved by Mac Lane in the case of monoidal categories [12]. In general a coherence theorem
contains a description of a certain class of diagrams that are to commute. Coherence theorems exist for 
various other structures, e.g. bicategories [13], or V -natural transformations for a symmetric monoidal 
closed category V [10].

Coherence results are often a consequence of (arguably more essential [9]) strictification theorems. A 
strictification theorem states that a “weak” structure is equivalent to a “strict” (or at least “stricter”) 
one. For example any bicategory is biequivalent to a 2-category, and the same is true for pseudofunctors 
(this is a consequence of this general strictification result [15]). It does not hold however for pseudonatural 
transformations.

0.2. Free categories and rewriting

Coherence theorems can also be proven through rewriting techniques. The link between coherence and 
rewriting goes back to Squier’s homotopical Theorem [16], and has since been expanded upon [6]. Squier’s 
theory is constructive, which means that the coherence conditions can be calculated from the relations, in a 
potentially automatic way. It can also be expanded to higher dimensions [8], a feature that may prove useful 
when studying weaker structures. In [7], the authors use Squier’s theory to prove the coherence of monoidal 
categories. Let us give an outline of the proof in the case of categories equipped with an associative tensor 
product.

Polygraphs are presentations for higher-dimensional categories and were introduced by Burroni [3], and 
by Street under the name of computads [17,18]. In this paper we use Burroni’s terminology. For example, 
a 1-polygraph is given by a graph G, and the free 1-category it generates is the category of paths on G. If 
Σ is an n-polygraph, we denote by Σ∗ the free n-category generated by Σ.

An (n, p)-category is a category where all k-cells are invertible, for k > p. In particular, (n, 0)-categories 
are commonly called n-groupoids, and (n, n)-categories are just n-categories. There is a corresponding notion 
of (n, p)-polygraph. If Σ is an (n, p)-polygraph, we denote by Σ∗(p) the free (n, p)-category generated by Σ.

The structure of category equipped with an associative tensor product is encoded into a 4-polygraph 
Assoc, which generates a free (4, 2)-category Assoc∗(2). The 4-polygraph Assoc contains one generating 

2-cell coding for product, one generating 3-cell : � coding for associativity and one 

generating 4-cell corresponding to Mac Lane’s pentagon:

The coherence result for categories equipped with an associative product is now reduced to showing that, 
between every parallel 3-cells A, B in Assoc∗(2), there exists a 4-cell α : A �� B in Assoc∗(2). A 4-category 
satisfying this property is said to be 3-coherent.

Let us denote by Assoc∗ the free 4-category generated by Assoc. We have the following properties:



Download English Version:

https://daneshyari.com/en/article/5772916

Download Persian Version:

https://daneshyari.com/article/5772916

Daneshyari.com

https://daneshyari.com/en/article/5772916
https://daneshyari.com/article/5772916
https://daneshyari.com

