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For real symmetric, or complex Hermitian, matrices whose 
graph is a tree, there is a well-developed (via several papers) 
theory about the possible multiplicities of the eigenvalues. 
It includes a theory of vertices whose removal increases 
a multiplicity (the “Parter–Wiener, etc. theory” and the 
“downer branch mechanism”), how to determine maximum 
multiplicity, lower bounds for the minimum number of distinct 
eigenvalues, etc. Remarkably, a great deal of this theory may 
be generalized to geometric multiplicities of general matrices 
over a field (with very different proofs). We show here what 
parts of this theory generalize, and, in the process, review the 
theory.
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1. Introduction

Given a real symmetric, or complex Hermitian, matrix whose graph is a tree T , a re-
markable theory has developed for the multiplicities of the eigenvalues. This began with 
the work [7], was refined in [9] and rather fully explained in [5], as well as references ad-
dressing allied issues such as maximum multiplicity [2] and minimum number of distinct 
eigenvalues [3], etc.

After briefly reviewing this theory, our purpose here is to show that it largely gener-
alizes to general matrices, over a field, whose graph is also a tree when “multiplicity” is 
replaced by “geometric multiplicity”. This substantial generalization requires key alge-
braic parts of proofs be very different, though certain combinatorial parts remain similar. 
The essential lesson is that much of multiplicity theory is fundamentally combinatorial 
and independent of the field or other matrix structure.

There appears to be little interesting to say in the case of algebraic multiplicity, except 
that almost anything can happen; for example, a n-by-n tridiagonal matrix may have 
one eigenvalue, with algebraic multiplicity n.

We consider only square, combinatorially symmetric matrices: A = (aij) with aij �= 0
if and only if aji �= 0. If the matrix is n-by-n, the off-diagonal nonzero pattern may be 
described with an undirected graph G(A) on n vertices in which {i, j} is an edge if and 
only if aij �= 0. Given a graph G on n vertices and a field F, denote by F(G) the set of all 
A ∈ Mn(F) for which G(A) = G. We focus upon the case in which G is a tree T , where 
the classical “Parter–Wiener, etc.” theory is valid. For A ∈ F(G), let gmA(λ) denote the 
geometric multiplicity of the eigenvalue λ in A; by “eigenvalue” we simply mean a root 
of the characteristic polynomial, which may lie in an extension field of F, and we also 
allow gmA(λ) = 0, when λ is not an eigenvalue. The algebraic multiplicity is denoted 
amA(λ), and when the two are the same, as in the real symmetric or diagonalizable case, 
we just use mA(λ). We also denote the spectrum of A by σ(A).

Given a graph G on n vertices and A ∈ F(G), if α is an index subset of {1, . . . , n}
then A(α) (resp. G − α) denotes the principal submatrix of A (resp. induced subgraph 
of G) resulting from deletion of the rows and columns (resp. vertices) indexed by α. A[α]
(resp. G[α]) denotes the principal submatrix (resp. induced subgraph) resulting from 
keeping only the rows and columns (resp. vertices) indexed by α. If G′ = G[α] we also 
often write A[G′], meaning the principal submatrix A[α]. We abbreviate A({i}) (resp. 
G − {i}) by A(i) (resp. G − i). When G is a tree, A(i) is then a direct sum, whose 
summands correspond to components of G − i, which we call branches of G at i.

Lemma 1. Let G be a graph, v a vertex of G, A ∈ F(G) and λ ∈ F. Then, in A(v) there 
are 3 possibilities, the third occurring only in case gmA(λ) ≥ 1:

1� gmA(v)(λ) = gmA(λ) + 1, which occurs if and only if

rank (A(v) − λI) = rank (A− λI) − 2;
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