Eigenvalue multiplicity in quartic graphs

Juliane Capaverde ${ }^{\text {a }}$, Peter Rowlinson ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departamento de Matemática Pura e Aplicada, Instituto de Matematica, Universidade Federal do Rio Grande do Sul, 90.000 Porto Alegre, RS, Brazil
${ }^{\text {b }}$ Mathematics and Statistics Group, Institute of Computing Science and
Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

A R T I C L E I N F O

Article history:

Received 23 November 2016
Accepted 30 August 2017
Submitted by R. Brualdi

MSC:

05C50

A B S T R A C T

Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. We show that if $\mu \notin\{-1,0\}$ then $k \leq(2 n-5) / 3$ when $n \leq 22$, and $k \leq(3 n-1) / 5$ when $n \geq 23$. If $\mu \in\{-1,0\}$ then $k \leq(2 n+2) / 3$, with equality if and only if $G=K_{5}$ (with $\mu=-1$) or $G=K_{4,4}($ with $\mu=0)$.
© 2017 Elsevier Inc. All rights reserved.

Keywords:
Eigenvalue
Quartic graph
Star complement

1. Introduction

Let G be a regular graph of order n with μ as an eigenvalue of multiplicity k, and let $t=n-k$. Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a $(0,1)$-adjacency matrix A of G has dimension k and codimension t. From [1, Theorem 3.1], we know that if $\mu \notin\{-1,0\}$ then $k \leq n-\frac{1}{2}(-1+\sqrt{8 n+9})$, equivalently $k \leq \frac{1}{2}(t+1)(t-2)$. For connected quartic graphs, a bound which is linear in t follows easily from the equation $\operatorname{tr}(A)=0$. To see this, we suppose that $k \geq \frac{1}{2} n$, i.e. $k \geq t$. Then G is non-bipartite; also μ is an integer,

[^0]for otherwise it has an algebraic conjugate which is a second eigenvalue of multiplicity k. It follows that if G is a connected quartic graph then $\mu \in\{-3,-2,1,2,3\}$ (see [6, Sections 1.3 and 3.2]). Let d be the mean of the eigenvalues other than 4 and μ, so that $4+k \mu+(n-k-1) d=0$. We have $-4<d<4$, and so:
(a) if $\mu=-3$ then $k<\frac{4}{7} n$, i.e. $k<\frac{4}{3} t$;
(b) if $\mu=-2$ then $k<\frac{2}{3} n$, i.e. $k<2 t$;
(c) if $\mu=1$ then $k<\frac{4}{5} n-\frac{8}{5}$, i.e. $k<4 t-8$;
(d) if $\mu=2$ then $k<\frac{2}{3} n-\frac{4}{3}$, i.e. $k<2 t-4$;
(e) if $\mu=3$ then $k<\frac{4}{7} n-\frac{8}{7}$, i.e. $k<\frac{4}{3} t-\frac{8}{3}$.

We show first that $k \leq 2 t-5$ whenever $\mu \notin\{-1,0\}$. Then k is at most $\lfloor(2 n-5) / 3\rfloor$, a bound which is sharp for $n=6,9,12$. The arguments are somewhat different from those in the paper [9], where a corresponding bound for cubic graphs was established. Section 2 contains the required results on star complements, while Section 3 provides details of the proof. It is quickly established that the bound holds when $t>9$ or $n>23$, and subsequently we are able to improve the bound to $(3 n-1) / 5$ when $n \geq 23$. The large number of quartic graphs of order ≤ 23 justifies our case-by-case analysis when $t \leq 9$: the cases $n>17$ are relatively easy to deal with, but there are already 86221634 connected quartic graphs of order 17 [8, Sequence A006820]. In Section 4 we show that when $\mu \in\{-1,0\}$ we have $k \leq(2 n+2) / 3$, with equality if and only if $G=K_{5}$ (with $\mu=-1$) or $G=K_{4,4}$ (with $\mu=0$).

2. Preliminaries

Let G be a graph of order n with μ as an eigenvalue of multiplicity k. A star set for μ in G is a subset X of the vertex-set $V(G)$ such that $|X|=k$ and the induced subgraph $G-X$ does not have μ as an eigenvalue. In this situation, $G-X$ is called a star complement for μ in G. The fundamental properties of star sets and star complements are established in [6, Chapter 5]. We shall require the following results where we write $u \sim v$, meaning that vertices u and v are adjacent. For any $U \subseteq V(G)$, we write G_{U} for the subgraph of G induced by U, and $\Delta_{U}(v)$ for the set $\{u \in U: u \sim v\}$. For the subgraph H of G it is convenient to write $\Delta_{H}(v)$ for $\Delta_{V(H)}(v)$.

Theorem 2.1. (See [6, Theorem 5.1.7]) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\left(\begin{array}{cc}A_{X} & B^{\top} \\ B & C\end{array}\right)$, where A_{X} is the adjacency matrix of G_{X}.
(i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{\top}(\mu I-C)^{-1} B \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/5772950

Download Persian Version:
https://daneshyari.com/article/5772950

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: juliane.capaverde@ufrgs.br (J. Capaverde), p.rowlinson@stirling.ac.uk (P. Rowlinson).

