

Linear Algebra and its Applications

Contents lists available at ScienceDirect

www.elsevier.com/locate/laa

Eigenvalue multiplicity in quartic graphs

LINEAR

lications

Juliane Capaverde^a, Peter Rowlinson^{b,*}

 ^a Departamento de Matemática Pura e Aplicada, Instituto de Matematica, Universidade Federal do Rio Grande do Sul, 90.000 Porto Alegre, RS, Brazil
 ^b Mathematics and Statistics Group, Institute of Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA, United Kingdom

ARTICLE INFO

Article history: Received 23 November 2016 Accepted 30 August 2017 Submitted by R. Brualdi

 $\begin{array}{c} MSC:\\ 05C50 \end{array}$

Keywords: Eigenvalue Quartic graph Star complement

ABSTRACT

Let G be a connected quartic graph of order n with μ as an eigenvalue of multiplicity k. We show that if $\mu \notin \{-1, 0\}$ then $k \leq (2n-5)/3$ when $n \leq 22$, and $k \leq (3n-1)/5$ when $n \geq 23$. If $\mu \in \{-1, 0\}$ then $k \leq (2n+2)/3$, with equality if and only if $G = K_5$ (with $\mu = -1$) or $G = K_{4,4}$ (with $\mu = 0$).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a regular graph of order n with μ as an eigenvalue of multiplicity k, and let t = n - k. Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0, 1)-adjacency matrix A of G has dimension k and codimension t. From [1, Theorem 3.1], we know that if $\mu \notin \{-1, 0\}$ then $k \leq n - \frac{1}{2}(-1 + \sqrt{8n+9})$, equivalently $k \leq \frac{1}{2}(t+1)(t-2)$. For connected quartic graphs, a bound which is linear in t follows easily from the equation $\operatorname{tr}(A) = 0$. To see this, we suppose that $k \geq \frac{1}{2}n$, i.e. $k \geq t$. Then G is non-bipartite; also μ is an integer,

E-mail addresses: juliane.capaverde@ufrgs.br (J. Capaverde), p.rowlinson@stirling.ac.uk (P. Rowlinson).

^{*} Corresponding author.

for otherwise it has an algebraic conjugate which is a second eigenvalue of multiplicity k. It follows that if G is a connected quartic graph then $\mu \in \{-3, -2, 1, 2, 3\}$ (see [6, Sections 1.3 and 3.2]). Let d be the mean of the eigenvalues other than 4 and μ , so that $4 + k\mu + (n - k - 1)d = 0$. We have -4 < d < 4, and so:

(a) if $\mu = -3$ then $k < \frac{4}{7}n$, i.e. $k < \frac{4}{3}t$; (b) if $\mu = -2$ then $k < \frac{2}{3}n$, i.e. k < 2t; (c) if $\mu = 1$ then $k < \frac{4}{5}n - \frac{8}{5}$, i.e. k < 4t - 8; (d) if $\mu = 2$ then $k < \frac{2}{3}n - \frac{4}{3}$, i.e. k < 2t - 4; (e) if $\mu = 3$ then $k < \frac{4}{7}n - \frac{8}{7}$, i.e. $k < \frac{4}{3}t - \frac{8}{3}$.

We show first that $k \leq 2t - 5$ whenever $\mu \notin \{-1, 0\}$. Then k is at most $\lfloor (2n - 5)/3 \rfloor$, a bound which is sharp for n = 6, 9, 12. The arguments are somewhat different from those in the paper [9], where a corresponding bound for cubic graphs was established. Section 2 contains the required results on star complements, while Section 3 provides details of the proof. It is quickly established that the bound holds when t > 9 or n > 23, and subsequently we are able to improve the bound to (3n - 1)/5 when $n \geq 23$. The large number of quartic graphs of order ≤ 23 justifies our case-by-case analysis when $t \leq 9$: the cases n > 17 are relatively easy to deal with, but there are already 86221634 connected quartic graphs of order 17 [8, Sequence A006820]. In Section 4 we show that when $\mu \in \{-1, 0\}$ we have $k \leq (2n + 2)/3$, with equality if and only if $G = K_5$ (with $\mu = -1$) or $G = K_{4,4}$ (with $\mu = 0$).

2. Preliminaries

Let G be a graph of order n with μ as an eigenvalue of multiplicity k. A star set for μ in G is a subset X of the vertex-set V(G) such that |X| = k and the induced subgraph G-X does not have μ as an eigenvalue. In this situation, G-X is called a star complement for μ in G. The fundamental properties of star sets and star complements are established in [6, Chapter 5]. We shall require the following results where we write $u \sim v$, meaning that vertices u and v are adjacent. For any $U \subseteq V(G)$, we write G_U for the subgraph of G induced by U, and $\Delta_U(v)$ for the set $\{u \in U : u \sim v\}$. For the subgraph H of G it is convenient to write $\Delta_H(v)$ for $\Delta_{V(H)}(v)$.

Theorem 2.1. (See [6, Theorem 5.1.7]) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\begin{pmatrix} A_X & B^\top \\ B & C \end{pmatrix}$, where A_X is the adjacency matrix of G_X . (i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$\mu I - A_X = B^{\top} (\mu I - C)^{-1} B.$$
(1)

Download English Version:

https://daneshyari.com/en/article/5772950

Download Persian Version:

https://daneshyari.com/article/5772950

Daneshyari.com