Pascal eigenspaces and invariant sequences of the first or second kind ${ }^{\text {ts }}$

Ik-Pyo Kim ${ }^{\text {a,* }}$, Michael J. Tsatsomeros ${ }^{\text {b }}$
a Department of Mathematics Education, Daegu University, Gyeongbuk, 38453, Republic of Korea
b Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA

A R T I C L E I N F O

Article history:

Received 6 November 2015
Accepted 4 September 2017
Available online 5 September 2017
Submitted by R. Brualdi

MSC:

15B18
11B39
11B65

Keywords:
Invariant sequence
Pascal matrix
Eigenvalue
Eigenvector

A B S T R A C T

An infinite real sequence $\left\{a_{n}\right\}$ is called an invariant sequence of the first (resp., second) kind if $a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}$ (resp., $\left.a_{n}=\sum_{k=n}^{\infty}\binom{k}{n}(-1)^{k} a_{k}\right)$. We review and investigate invariant sequences of the first and second kind, and study their relationships using similarities of Pascal-type matrices and their eigenspaces.
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Inverse relations play an important role in combinatorics [11]. The binomial inversion formula, which states that for sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}(n=0,1,2, \ldots)$,

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} b_{k} \quad \text { if and only if } \quad b_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k} \tag{1.1}
\end{equation*}
$$

is a typical inverse relation considered in [6,8,10,14-16]. Specifically, (1.1) motivated Sun [14] to investigate the following sequences.

Definition 1.1. Let $\left\{a_{n}\right\}(n=0,1,2, \ldots)$ be a sequence such that

$$
\begin{equation*}
(-1)^{s-1} a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k} ; s=1 \text { or } s=2 \tag{1.2}
\end{equation*}
$$

We refer to $\left\{a_{n}\right\}$ as an invariant sequence (when $s=1$) or an inverse invariant sequence (when $s=2$) of the first kind.

Several examples of invariant sequences of the first kind can be found in [14], including

$$
\left\{\frac{1}{2^{n}}\right\},\left\{n F_{n-1}\right\},\left\{L_{n}\right\},\left\{(-1)^{n} B_{n}\right\} \quad(n \geq 0)
$$

where $F_{-1}=0$ and $\left\{F_{n}\right\},\left\{L_{n}\right\}$, and $\left\{B_{n}\right\}$ are the Fibonacci sequence, Lucas sequence, and Bernoulli numbers [7], respectively. In this paper, we will establish (see Lemma 2.1) the modified binomial inversion formula, that is,

$$
\begin{equation*}
a_{n}=\sum_{k=n}^{\infty}\binom{k}{n}(-1)^{k} b_{k} \quad \text { if and only if } \quad b_{n}=\sum_{k=n}^{\infty}\binom{k}{n}(-1)^{k} a_{k} \tag{1.3}
\end{equation*}
$$

Motivated by (1.3), we will introduce and consider the following sequences.
Definition 1.2. Let $\left\{a_{n}\right\}(n=0,1,2, \ldots)$ be a sequence such that

$$
\begin{equation*}
(-1)^{s-1} a_{n}=\sum_{k=n}^{\infty}\binom{k}{n}(-1)^{k} a_{k} ; \quad s=1 \text { or } s=2 \tag{1.4}
\end{equation*}
$$

We refer to $\left\{a_{n}\right\}$ as an invariant sequence (when $s=1$) or an inverse invariant sequence (when $s=2$) of the second kind.

Naturally arising are the questions of existence, identification, and construction of (inverse) invariant sequences of the second kind, as well as the problem of characterizing such sequences and examining their relationship to their counterparts of the first kind. Invariant sequences, which are also called self-inverse sequences in [15], have indeed been

https://daneshyari.com/en/article/5772951

Download Persian Version:

https://daneshyari.com/article/5772951

Daneshyari.com

[^0]: Research supported by Daegu University Research Grant 2013.

 * Corresponding author.

 E-mail addresses: kimikpyo@daegu.ac.kr (I.-P. Kim), tsat@math.wsu.edu (M.J. Tsatsomeros).

