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An infinite real sequence {an} is called an invariant sequence 
of the first (resp., second) kind if an =

∑n
k=0

(
n
k

)
(−1)kak

(resp., an =
∑∞

k=n

(
k
n

)
(−1)kak). We review and investigate 

invariant sequences of the first and second kind, and study 
their relationships using similarities of Pascal-type matrices 
and their eigenspaces.
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1. Introduction

Inverse relations play an important role in combinatorics [11]. The binomial inversion 
formula, which states that for sequences {an} and {bn} (n = 0, 1, 2, . . . ),

an =
n∑

k=0

(
n

k

)
(−1)kbk if and only if bn =

n∑
k=0

(
n

k

)
(−1)kak, (1.1)

is a typical inverse relation considered in [6,8,10,14–16]. Specifically, (1.1) motivated 
Sun [14] to investigate the following sequences.

Definition 1.1. Let {an} (n = 0, 1, 2, . . . ) be a sequence such that

(−1)s−1 an =
n∑

k=0

(
n

k

)
(−1)kak; s = 1 or s = 2. (1.2)

We refer to {an} as an invariant sequence (when s = 1) or an inverse invariant sequence
(when s = 2) of the first kind.

Several examples of invariant sequences of the first kind can be found in [14], including

{ 1
2n }, {nFn−1}, {Ln}, {(−1)nBn} (n ≥ 0),

where F−1 = 0 and {Fn}, {Ln}, and {Bn} are the Fibonacci sequence, Lucas sequence, 
and Bernoulli numbers [7], respectively. In this paper, we will establish (see Lemma 2.1) 
the modified binomial inversion formula, that is,

an =
∞∑

k=n

(
k

n

)
(−1)kbk if and only if bn =

∞∑
k=n

(
k

n

)
(−1)kak. (1.3)

Motivated by (1.3), we will introduce and consider the following sequences.

Definition 1.2. Let {an} (n = 0, 1, 2, . . . ) be a sequence such that

(−1)s−1an =
∞∑

k=n

(
k

n

)
(−1)kak; s = 1 or s = 2. (1.4)

We refer to {an} as an invariant sequence (when s = 1) or an inverse invariant sequence
(when s = 2) of the second kind.

Naturally arising are the questions of existence, identification, and construction of 
(inverse) invariant sequences of the second kind, as well as the problem of characterizing 
such sequences and examining their relationship to their counterparts of the first kind. 
Invariant sequences, which are also called self-inverse sequences in [15], have indeed been 
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