

The characteristic polynomial of an algebra and representations

Rajesh S. Kulkarni^a, Yusuf Mustopa^b, Ian Shipman^{c,*}

^a Michigan State University, East Lansing, MI, United States

^b Tufts University, Medford, MA, United States

 $^{\rm c}$ Harvard University, Cambridge, MA, United States

A R T I C L E I N F O

Article history: Received 1 March 2016 Accepted 1 May 2017 Available online 5 May 2017 Submitted by J.M. Landsberg

MSC: 15A86 15A66

Keywords: Characteristic polynomial Linear preserver

ABSTRACT

We pose two new linear preserver problems. First, given a field **k** and a finite dimensional **k**-algebra *B* we show that the only linear maps $\phi: \mathbf{k}^{\times d} \to B$ which preserve the unit and the *n*-th roots of unity (for some n > 2 coprime to $\operatorname{char}(k)$) are the algebra homomorphisms. Second, we consider linear maps $\phi: A \to B$ between finite dimensional **k**-algebras which preserve the Cayley–Hamilton relations. We show that if preservation of the Cayley–Hamilton property is understood in a certain non-commutative sense, and $A = \mathbf{k}^{\times d}$, then the only such linear mappings are the algebra homomorphisms. \otimes 2017 Published by Elsevier Inc.

Suppose that **k** is a field and let A be a finite dimensional, associative, unital **k**-algebra. Often one is interested in studying the finite-dimensional representations of A. Of course, a finite dimensional representation of A is simply a finite dimensional **k**-vector space M and a **k**-algebra homomorphism $A \to \operatorname{End}_{\mathbf{k}}(M)$. In this article we will not consider representations of algebras, but rather how to determine if a **k**-linear map $\phi : A \to \operatorname{End}_{\mathbf{k}}(M)$ is actually a homomorphism. We restrict our attention to the case where A is

* Corresponding author.

E-mail addresses: kulkarni@math.msu.edu (R.S. Kulkarni), Yusuf.Mustopa@tufts.edu (Y. Mustopa), ian.shipman@gmail.com (I. Shipman).

a product of copies of **k**. If $\phi : A \to \operatorname{End}_{\mathbf{k}}(M)$ is a representation then certainly, if $a \in A$ satisfies $a^m = 1$ then $\phi(a)^m = \operatorname{id}$ as well. Our first Theorem is a remarkable converse to this elementary observation.

Theorem A. Let \mathbf{k} be a field of characteristic unequal to 2. Let $A = \mathbf{k}^{\times d}$ and B be a finite dimensional \mathbf{k} -algebra. Fix n > 2 and suppose that \mathbf{k} contains a full set of n-th roots of unity. If a linear map $\phi: A \to B$ satisfies $\phi(1_A) = 1_B$ and $\phi(a)^n = 1_B$ for each $a \in A$ such that $a^n = 1_A$, then ϕ is an algebra homomorphism.

Remark 1. In the case $A = Mat_n(\mathbf{k})$ and k > 1, there is a complete classification of those linear mappings $\phi: A \to Mat_m(\mathbf{k})$ such that $\phi(X^k) = \phi(X)^k$ and of those mappings where if $X^k = X$ then $\phi(X)^k = \phi(X)$. See [3,1,9] and the references therein. Such mappings need not be homomorphisms (or antihomomorphisms).

Consider the regular representation $\mu_L : A \to \operatorname{End}_{\mathbf{k}}(A)$ of A on itself by left multiplication. For $a \in A$, let $\chi_a(t)$ and $\overline{\chi}_a(t)$ be the characteristic and minimal polynomials of $\mu_L(a)$, respectively. We note that $\chi_a(a) = \overline{\chi}_a(a) = 0$ in A. Therefore if M is a finite dimensional left A module with structure map $\phi : A \to \operatorname{End}_{\mathbf{k}}(M)$ then $\chi_a(\phi(a)) = \overline{\chi}_a(\phi(a)) = 0$ in $\operatorname{End}_{\mathbf{k}}(M)$. The notion of assigning a characteristic polynomial to each element of an algebra and considering representations which are compatible with this assignment has appeared in [8]. This idea has been applied to some problems in noncommutative geometry as well [5].

Definition 2. Suppose that $\phi : A \to B$ is a k-linear map, where B is a k-algebra. We say that ϕ is a *characteristic morphism* if $\chi_a(\phi(a)) = 0$ for all $a \in A$. We say that ϕ is *minimal-characteristic* if, moreover, $\overline{\chi}_a(\phi(a)) = 0$ for all $a \in A$.

Remark 3. While the notion of characteristic morphism appears to be new, especially in the case where A and B are general **k**-algebras, several related notions have been studied. Suppose that $A = \operatorname{Mat}_n(\mathbf{k})$ and ϕ is a linear endomorphism of A. If ϕ preserves the determinant then, according to a result of Frobenius [4], $\phi(X) = MXN$ or $\phi(X) =$ MX^TN where det(MN) = 1. Furthermore, Marcus and Purves [6] extend this by proving that if ϕ preserves any one of the coefficients of the characteristic polynomial (other than the (n-1)-st, (n-2)-nd, (n-3)-rd or 0-th) then either $\phi(X) = MXM^{-1}$ or $\phi(X) = MX^TM^{-1}$ (up to multiplying by an appropriate root of unity). Their result implies that a characteristic endomorphism of $A = \operatorname{Mat}_n(\mathbf{k})$ is either an automorphism or anti-automorphism.

It is natural to ask whether or not the notions of characteristic morphism and minimalcharacteristic morphism are weaker than the notion of algebra morphism. Let us address minimal-characteristic morphisms first. Download English Version:

https://daneshyari.com/en/article/5772962

Download Persian Version:

https://daneshyari.com/article/5772962

Daneshyari.com