Accepted Manuscript

Matrix polynomials: Factorization via bisolvents

PII:	S0024-3795(17)30270-7
DOI:	http://dx.doi.org/10.1016/j.laa.2017.04.033
Reference:	LAA 14142

To appear in: Linear Algebra and its Applications

Received date: 10 December 2014
Accepted date: 24 April 2017

Please cite this article in press as: N. Cohen, E. Pereira, Matrix polynomials: Factorization via bisolvents, Linear Algebra Appl. (2017), http://dx.doi.org/10.1016/j.laa.2017.04.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Matrix Polynomials: Factorization via Bisolvents

Nir Cohen ${ }^{1}$, Edgar Pereira ${ }^{1}$

Abstract

We reconsider the classification of all the factorizations of a matrix polynomial P as $P=Q R$ with Q a matrix polynomial and $R(\lambda)=\lambda T-S$ a regular matrix pencil. It is shown that the entire classification problem can be reduced to the simpler classification of factors R with commuting coefficients S, T. It is then shown that, for these commuting factors, S and T must satisfy a certain algebraic equation which we call the bisolvent equation. This extends the generalized Bézout theorem which associates monic factors $\lambda I-S$ with solutions S of a solvent equation.

In case P is regular, the classification of commuting pairs (S, T) of this type (up to left equivalence) is described in terms of enlarged standard pairs, following a well known approach. Under a non-derogatory generic condition on the roots of P, the number of such pairs associated with degree-minimal factorizations is finite, and admits explicit description in terms of Jordan chains.

MSC2010: 15A23, 15A21, 15A22

Keywords: Matrix polynomial, solvent, standard pair, commuting matrices, factorization, Weierstrass form.

1 Introduction

There is interest in extending the fundamental theorem of algebra, from polynomials over an algebraically closed field \mathbb{F}, to matrix-valued polynomials $P(\lambda)=\sum_{j=0}^{\pi} \lambda^{j} P_{j}$ over \mathbb{F}. Here, one needs to reconsider the fundamental notions of factorability and roots, due to the lack of commutativity, and to re-evaluate the equivalence between them.

As far as factorability is concerned, the existence and uniqueness of the factorization are no more guaranteed, irreducible factors may be nonlinear, and the sum of degrees of the factors may exceed the degree of their product. Known results are either based on spectral analysis, as summarized

[^0]
https://daneshyari.com/en/article/5772963

Download Persian Version:
https://daneshyari.com/article/5772963

Daneshyari.com

[^0]: ${ }^{1}$ Department of Mathematics, UFRN - Universidade Federal do Rio Grande do Norte, Natal, Brazil (nir@ccet.ufrn.br, edgar@ccet.ufrn.br).

