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Matrix Polynomials: Factorization via Bisolvents

Nir Cohen1, Edgar Pereira1

Abstract: We reconsider the classification of all the factorizations of a matrix poly-

nomial P as P = QR with Q a matrix polynomial and R(λ) = λT − S a regular matrix

pencil. It is shown that the entire classification problem can be reduced to the simpler

classification of factors R with commuting coefficients S, T . It is then shown that, for

these commuting factors, S and T must satisfy a certain algebraic equation which we

call the bisolvent equation. This extends the generalized Bézout theorem which associates

monic factors λI − S with solutions S of a solvent equation.

In case P is regular, the classification of commuting pairs (S, T ) of this type (up to left

equivalence) is described in terms of enlarged standard pairs, following a well known

approach. Under a non-derogatory generic condition on the roots of P , the number of

such pairs associated with degree-minimal factorizations is finite, and admits explicit

description in terms of Jordan chains.
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1 Introduction

There is interest in extending the fundamental theorem of algebra, from polynomials over an alge-

braically closed field F, to matrix-valued polynomials P (λ) =
∑π

j=0 λ
jPj over F. Here, one needs

to reconsider the fundamental notions of factorability and roots, due to the lack of commutativity,

and to re-evaluate the equivalence between them.

As far as factorability is concerned, the existence and uniqueness of the factorization are no more

guaranteed, irreducible factors may be nonlinear, and the sum of degrees of the factors may exceed

the degree of their product. Known results are either based on spectral analysis, as summarized
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