Accepted Manuscript

The distance spectrum of complements of trees

Huiqiu Lin, Stephen Drury

PII:	S0024-3795(17)30304-X
DOI:	http://dx.doi.org/10.1016/j.laa.2017.05.016
Reference:	LAA 14164

To appear in: Linear Algebra and its Applications

Received date: 9 November 2015
Accepted date: 8 May 2017

Please cite this article in press as: H. Lin, S. Drury, The distance spectrum of complements of trees, Linear Algebra Appl. (2017), http://dx.doi.org/10.1016/j.laa.2017.05.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

THE DISTANCE SPECTRUM OF COMPLEMENTS OF TREES

HUIQIU LIN AND STEPHEN DRURY

Abstract

Let G be a connected graph of order n and $D(G)$ be its distance matrix. In this paper, we characterize the unique graphs whose distance spectral radius attains the maximum and minimum among all complements of trees. Furthermore, we determine the unique graphs whose least distance eigenvalues attains the maximum and minimum among all complements of trees.

1. Introduction

Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$, where $|V(G)|=n,|E(G)|=m$. Also let $d_{i}(G)$ (or d_{i}) be the degree of the vertex $v_{i} \in V(G)$. We always assume that the graph under consideration is connected when the problem is concerned with the distance. We denote C_{n} the n-cycle and P_{n} the path with n vertices. P_{1} is interpreted as an isolated vertex. We denote $K_{a, b}$ the complete bipartite graph on vertex sets of sizes a and b. Thus $K_{1, n-1}$ is a tree, in fact the only tree with n vertices and disconnected complement. The tree $T_{a, b}$ is the tree obtained by appending a pendent edges to one vertex of P_{2} and b pendent edges to the other. Thus $T_{a, b}$ has order $a+b+2$. We denote by $S_{a_{1}, a_{2}, \ldots, a_{k}}$ the tree with a unique vertex of degree greater than 2 whose removal leaves k disjoint paths, namely $P_{a_{1}}, P_{a_{2}}, \ldots, P_{a_{k}}$. Thus $S_{a_{1}, a_{2}, \ldots, a_{k}}$ has order $1+a_{1}+\cdots a_{k}$. We will use the notation Q_{n} for $S_{n-3,1,1}$. The tree R_{n} is depicted in Figure 1.

Fig. 1 The tree R_{n}.

[^0]
https://daneshyari.com/en/article/5772970

Download Persian Version:
https://daneshyari.com/article/5772970

Daneshyari.com

[^0]: 2010 Mathematics Subject Classification. 05C50.
 Key words and phrases. Distance spectrum, complement of trees, least distance eigenvalue.

