Linear mappings preserving the diameter of the numerical range

Jor-Ting Chan, Kong Chan
Department of Mathematics, The University of Hong Kong, Hong Kong

A R T I C L E I N F O

Article history:

Received 20 January 2017
Accepted 9 May 2017
Available online 15 May 2017
Submitted by P. Semrl

$M S C$:

47A12
15A86
14R10

Abstract

Let H be a complex Hilbert space and let $B(H)$ be the set of all bounded linear operators on H. For every $A \in B(H)$, the numerical range of A is the set $W(A)=\{\langle A x, x\rangle$: $x \in H$ and $\|x\|=1\}$ and the diameter of $W(A)$ is the number $d(W(A))=\sup \{|\lambda-\mu|: \lambda, \mu \in W(A)\}$. A mapping $T: B(H) \rightarrow B(H)$ is called a diameter preserver if $d(W(T(A)))=d(W(A))$ for all $A \in B(H)$. In this article we give a characterization of surjective linear diameter preservers. © 2017 Elsevier Inc. All rights reserved.

Keywords:
Numerical range
Preserver
Diameter

1. Introduction

Let H be a complex Hilbert space and $B(H)$ the Banach algebra of all bounded linear operators on H. For each $A \in B(H)$, the numerical range and numerical radius of A are defined respectively by

$$
W(A)=\{\langle A x, x\rangle: x \in H \text { and }\|x\|=1\} \quad \text { and } \quad r(A)=\sup \{|\lambda|: \lambda \in W(A)\} .
$$

[^0]http://dx.doi.org/10.1016/j.laa.2017.05.018
0024-3795/© 2017 Elsevier Inc. All rights reserved.

The diameter of $W(A)$ is defined as usual by

$$
d(W(A))=\sup \{|\lambda-\mu|: \lambda, \mu \in W(A)\} .
$$

We shall call this number the diameter of A and write $d(A)$ instead of $d(W(A))$. A mapping $T: B(H) \rightarrow B(H)$ is called a diameter preserver if it preserves the diameter of A for each $A \in B(H)$, i.e., if

$$
d(T(A))=d(A) \quad \text { for all } A \in B(H)
$$

The main result of this article is a characterization of surjective linear diameter preservers.

Our study is inspired by [5,2] and [4], in which the authors studied diameter preservers on $C(X)$, the Banach space of all continuous functions on a compact Hausdorff space X. Here the diameter of an $f \in C(X)$ is the diameter of its range, i.e.,

$$
d(f)=\sup \{|f(x)-f(y)|: x, y \in X\} .
$$

The result has been extended in different directions. For example, in [3] and [1], the authors considered diameter preservers on $A(S)$, the Banach space of continuous affine functions on a compact convex set S. This is related to our study as follows. Let S be the state-space of $B(H)$, i.e.,

$$
S=\left\{\phi \in B(H)^{*}: \phi(I)=1=\|\phi\|\right\} .
$$

The set S is convex and compact in the weak* topology. Every $A \in B(H)$ can be identified with the continuous affine function $\phi \mapsto \phi(A)$ on S. The sup-norm and the diameter of the function are the numerical radius and the diameter of A respectively. Our study can be viewed as the study of diameter preservers on $A(S)$. This consideration enables us to make use of the tools developed in these papers.

Another related problem is the following. For any $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}$, the c-numerical range and c-numerical radius are defined respectively by

$$
W_{c}(A)=\left\{\sum_{j=1}^{n} c_{j}\left\langle A x_{j}, x_{j}\right\rangle:\left\{x_{1}, \ldots, x_{j}\right\} \text { is an orthonormal set in } H\right\}
$$

and $r_{c}(A)=\sup \left\{|\lambda|: \lambda \in W_{c}(A)\right\}$. By [12, Lemma 1], the diameter of A is equal to $r_{c}(A)$ for $c=(1,-1)$. When $\operatorname{dim} H<\infty$, complete descriptions of c-numerical radius preservers (for general c, not just $(1,-1)$) have been given by Li and Tsing in [9] and [10]. In other words, the problem (indeed a more general one) is solved when $\operatorname{dim} H<\infty$. In the sequel, we always assume that H is infinite-dimensional.

Note that $d(\cdot)$ is a semi-norm on $B(H)$. It is clearly not positive definite. Indeed $d(A)=0$ if and only if $W(A)$ is a singleton set if and only if $A=\lambda I$ for some $\lambda \in \mathbb{C}$,

https://daneshyari.com/en/article/5772972

Download Persian Version:
https://daneshyari.com/article/5772972

Daneshyari.com

[^0]: E-mail address: jtchan@hku.hk (J.-T. Chan).

