Derivations of tensor products of nonassociative algebras

Matej Brešar ${ }^{\text {a,b,*,1 }}$
${ }^{\text {a }}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
${ }^{\text {b }}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

A R T I C L E I N F O

Article history:

Received 24 May 2016
Accepted 11 May 2017
Available online 15 May 2017
Submitted by R. Brualdi

MSC:

17A36
15A69

Keywords:
Derivation
Nonassociative algebra
Tensor product of algebras

A B S T R A C T

Let R and S be nonassociative unital algebras. Assuming that either one of them is finite dimensional or both are finitely generated, we show that every derivation of $R \otimes S$ is the sum of derivations of the following three types: (a) ad u where u belongs to the nucleus of $R \otimes S$, (b) $L_{z} \otimes f$ where f is a derivation of S and z lies in the center of R, and (c) $g \otimes L_{w}$ where g is a derivation of R and w lies in the center of S.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let R and S be nonassociative algebras. What are natural examples of derivations of the tensor product algebra $R \otimes S$? First of all, just as in any algebra, every element u from the nucleus gives rise to the derivation $x \mapsto u x-x u$. Next, given a derivation f of S and an element z from the center of R, the map given by $x \otimes y \mapsto z x \otimes f(y)$ is a derivation

[^0]of $R \otimes S$. Similarly, $x \otimes y \mapsto g(x) \otimes w y$ defines a derivation of $R \otimes S$ for every derivation g of R and every central element $w \in S$. The goal of this short paper is to prove that under rather mild assumptions - namely, both R and S are unital and either one of them is finite dimensional or both are finitely generated - every derivation of $R \otimes S$ is the sum of derivations of the three types just described. From the nature of this result, and the relative simplicity of its proof, one would expect that it is known; however, we have not been able to find it in the literature. Among related results, we first mention the one by Block [3, Theorem 7.1] which considers a similar situation, just that the assumption that R is unital is weakened and, on the other hand, S is assumed to be associative and commutative. See also [1] for some extensions of Block's theorem. Benkart and Osborn dealt with the special case where R is the (associative) matrix algebra $M_{n}(F)[2$, Corollary 4.9]. Finally, in the case where both R and S are associative, the description of derivations of $R \otimes S$ can be (under some finiteness assumptions) obtained as a byproduct of results on Hochschild cohomology; see, for example, [7, Corollary 3.4].

In the next section we provide all definitions and prove a basic lemma. The third section is devoted to the main result, and in the last, fourth, section we record some corollaries.

2. Preliminaries

Let A be a nonassociative (i.e., not necessarily associative) algebra over a field F. For $x, y, z \in A$ we write

$$
[x, y, z]=(x y) z-x(y z)
$$

The set

$$
N(A)=\{n \in A \mid[n, A, A]=[A, n, A]=[A, A, n]=0\}
$$

is called the nucleus of A, and the set

$$
Z(A)=\{z \in N(A) \mid z x=x z \text { for all } x \in A\}
$$

is called the center of A. Of course, A is associative if and only if $N(A)=A$, and in this case the center is simply the set of elements that commute with all elements in A. We will consider the case where $A=R \otimes S$, the tensor product of unital algebras R and S. It is therefore important to note that

$$
N(R \otimes S)=N(R) \otimes N(S)
$$

as one can readily check.
Recall that a linear map $d: A \rightarrow A$ is called a derivation if it satisfies

https://daneshyari.com/en/article/5772974

Download Persian Version:

https://daneshyari.com/article/5772974

Daneshyari.com

[^0]: * Correspondence to: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia. E-mail address: matej.bresar@fmf.uni-lj.si.
 ${ }^{1}$ Supported by ARRS Grant P1-0288.

