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generated, we show that every derivation of R® S is the sum
of derivations of the following three types: (a) adu where u
belongs to the nucleus of R® S, (b) L. ® f where f is a

MSC: derivation of S and z lies in the center of R, and (c) g ® Ly,
17A36 where ¢ is a derivation of R and w lies in the center of S.
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1. Introduction

Let R and S be nonassociative algebras. What are natural examples of derivations of
the tensor product algebra R ® S7 First of all, just as in any algebra, every element u
from the nucleus gives rise to the derivation & — ux —xu. Next, given a derivation f of S
and an element z from the center of R, the map given by z®y — zx® f(y) is a derivation
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of R® S. Similarly, x ® y — g(z) ® wy defines a derivation of R® S for every derivation
g of R and every central element w € S. The goal of this short paper is to prove that
under rather mild assumptions — namely, both R and S are unital and either one of them
is finite dimensional or both are finitely generated — every derivation of R® .S is the sum
of derivations of the three types just described. From the nature of this result, and the
relative simplicity of its proof, one would expect that it is known; however, we have not
been able to find it in the literature. Among related results, we first mention the one
by Block [3, Theorem 7.1] which considers a similar situation, just that the assumption
that R is unital is weakened and, on the other hand, S is assumed to be associative
and commutative. See also [1] for some extensions of Block’s theorem. Benkart and
Osborn dealt with the special case where R is the (associative) matrix algebra M, (F) [2,
Corollary 4.9]. Finally, in the case where both R and S are associative, the description of
derivations of R®S can be (under some finiteness assumptions) obtained as a byproduct
of results on Hochschild cohomology; see, for example, [7, Corollary 3.4].

In the next section we provide all definitions and prove a basic lemma. The third
section is devoted to the main result, and in the last, fourth, section we record some
corollaries.

2. Preliminaries

Let A be a nonassociative (i.e., not necessarily associative) algebra over a field F'. For
x,y,z € A we write

[z,y,2] = (zy)z — 2(yz).
The set
N(A)={ne€ A|[n, A Al = [A,n, Al = [A, A,n] = 0}
is called the nucleus of A, and the set
Z(A)={z€ N(A) |zz = zz for all x € A}

is called the center of A. Of course, A is associative if and only if N(A) = A, and in this
case the center is simply the set of elements that commute with all elements in A. We
will consider the case where A = R ® S, the tensor product of unital algebras R and S.
It is therefore important to note that

N(R® S)=N(R)® N(S),

as one can readily check.
Recall that a linear map d : A — A is called a derivation if it satisfies
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