Accepted Manuscript

Graphs whose distance matrix has at most three negative eigenvalues

PII:	S0024-3795(17)30340-3
DOI:	http://dx.doi.org/10.1016/j.laa.2017.05.040
Reference:	LAA 14188

To appear in: Linear Algebra and its Applications

Received date: 1 December 2016
Accepted date: 21 May 2017

Please cite this article in press as: F. Tian, D. Wong, Graphs whose distance matrix has at most three negative eigenvalues, Linear Algebra Appl. (2017), http://dx.doi.org/10.1016/j.laa.2017.05.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphs whose distance matrix has at most three negative eigenvalues

Fenglei Tian, Dein Wong *
School of Mathematics, China University of Mining and Technology,
Xuzhou 221116, P. R. China.

Abstract

Let $D(G)$ be the distance matrix of a connected simple graph G. The negative inertia of $D(G)$, denoted by $n_{D}(G)$, is the number of negative eigenvalues of $D(G)$. In this paper, we determine all connected graphs G whose distance matrix $D(G)$ has at most three negative eigenvalues.

Keywords: Distance matrix; D-eigenvalue; Negative inertia
AMS classification: 05C50; 15A18

1 Introduction

Throughout, only connected, undirected and simple graphs are considered. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The order of G is the number of vertices of G, which is $|V(G)|$. For two vertices u and v, the distance between u and v, denoted by $\operatorname{dist}(u, v)$, is defined as the length of a shortest path joining u and v. The diameter of G, written as $d(G)$, is the maximum distance among all vertices of $V(G)$. The length of a smallest cycle of G, denoted by $g(G)$, is referred to as the girth of G. The set of vertices of G adjacent to a vertex u is written as $N_{G}(u)$. By $u \sim v$ (resp., $u \nsim v$) we mean u is adjacent (resp., not adjacent) to v. A subgraph H of G is called an induced subgraph, if H is obtained by deleting some vertices and the edges incident to them from G. As usual, we use $K_{n}, P_{n}, S_{1, n-1}$ and C_{n} to denote the complete graph, the path, the star and the cycle of order n, respectively. The identity matrix of order n is denoted by I_{n}. If the vertices of G are labelled as $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then the distance matrix $D(G)$ of G is defined as a symmetric real matrix with $\operatorname{dist}\left(v_{i}, v_{j}\right)$ as the (i, j)-entry. The eigenvalues of $D(G)$ are called the distance eigenvalues of G, or simply, D-eigenvalues of G. For graphs G_{1} and G_{2}, we say G_{1} is isomorphic to G_{2}, if G_{2} can be obtained from G_{1} by relabeling the vertices of G_{1}.

The number of negative D-eigenvalues is called the negative inertia of $D(G)$, denoted by $n_{D}(G)$. Generally, the inertia of $D(G)$ is defined as the triple of integers $\left(p_{D}(G), \eta_{D}(G), n_{D}(G)\right)$, where $p_{D}(G)$ and $\eta_{D}(G)$ denote the number of positive and zero eigenvalues of $D(G)$, respectively. In [9], Graham and Pollack (1971) proved $\operatorname{det}(D(T))=(-1)^{n-1}(n-1) 2^{n-2}$ for a tree T of order n, which implies that there is exactly one positive D-eigenvalue for a tree T, i.e., $p_{D}(T)=1$. From then on, many papers focused on the distance matrices of graphs, and some

[^0]
https://daneshyari.com/en/article/5772987

Download Persian Version:
https://daneshyari.com/article/5772987

Daneshyari.com

[^0]: *Corresponding author. wongdein@163.com. Supported by "the Fundamental Research Funds for the Central Universities (No. 2017BSCXB53)".

