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FUMIO HIAI AND YONGDO LIM

Dedicated to the memory of Professor Takayuki Furuta

Abstract. We introduce a class of flows on the Wasserstein space of probability

measures with finite first moment on the Cartan-Hadamard Riemannian manifold

of positive definite matrices, and consider the problem of differentiability of the

corresponding Cartan barycentric trajectory. As a consequence we have a version of

Lie-Trotter formula and a related unitarily invariant norm inequality. Furthermore,

a fixed point theorem related to the Karcher equation and the Cartan barycentric

trajectory is also presented as an application.
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1. Introduction and main theorem

Let Pm be the set of m × m positive definite matrices, which is a smooth Rie-

mannian manifold with the Riemannian trace metric 〈X, Y 〉A = trA−1XA−1Y, where

A ∈ Pm and X, Y ∈ Hm, the Euclidean space of m×m Hermitian matrices equipped

with the inner product 〈X, Y 〉 = trXY . Then Pm is a Cartan-Hadamard Riemann-

ian manifold, a simply connected complete Riemannian manifold with non-positive

sectional curvature (the canonical 2-tensor is non-negative). The Riemannian dis-

tance between A,B ∈ Pm with respect to the above metric is given by d(A,B) =

‖ logA−1/2BA−1/2‖2, where ‖X‖2 = (trX2)1/2 for X ∈ Hm, and the unique (up to

parametrization) geodesic joining A and B is given as the curve of weighted geometric

means
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