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BOUNDS ON THE JOINT AND GENERALIZED SPECTRAL
RADIUS OF THE HADAMARD GEOMETRIC MEAN OF
BOUNDED SETS OF POSITIVE KERNEL OPERATORS

ALJOŠA PEPERKO1,2

Abstract. Let Ψ1, . . .Ψm be bounded sets of positive kernel operators on a
Banach function space L. We prove that for the generalized spectral radius ρ
and the joint spectral radius ρ̂ the inequalities
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hold, where Ψ
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m denotes the Hadamard (Schur) geometric mean

of the sets Ψ1, . . . ,Ψm.

1. Introduction

In [34], X. Zhan conjectured that, for non-negative n × n matrices A and B,
the spectral radius ρ(A ◦B) of the Hadamard product satisfies

ρ(A ◦B) ≤ ρ(AB),

where AB denotes the usual matrix product of A and B. This conjecture was
confirmed by K.M.R. Audenaert in [3] via a trace description of the spectral ra-
dius. Soon after, this inequality was reproved, generalized and refined in different
ways by several authors ([18], [19], [27], [28], [26], [7], [13]). Applying a fact that
the Hadamard product is a principal submatrix of the Kronecker product (i.e.,
by applying the technique used by R.A. Horn and F. Zhang of [18]), Z. Huang
proved that

ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1A2 · · ·Am) (1.1)

for n × n non-negative matrices A1, A2, · · · , Am (see [19]). The author of the
current paper extended the inequality (1.1) to non-negative matrices that define
bounded operators on Banach sequence spaces in [26]. Moreover, in [26, Theorem
3.16] he generalized this inequality to the setting of the generalized and the joint
spectral radius of bounded sets of such non-negative matrices. In the proofs
certain results on the Hadamard product from [11] and [25] were used.

Earlier, A.R. Schep was the first one to observe that the results [11] and [25]
are applicable in this context (see [27] and [28]). In particular, in [27, Theorem
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