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We consider a general binary model for which conditional 
probability of success given vector of predictors X equals 
q(βT

1 X, . . . , βT
k X) and a family of possibly misspecified 

logistic regressions fitted to it. In the case when X satisfies 
linearity condition we show that their algebraic structure is 
uniquely determined and that the vector β∗ corresponding 
to Kullback–Leibler projection on this family is a linear 
combination of β1, . . . , βk. This generalizes the known result 
proved by P. Ruud for k = 1 which says that the true 
and projected vectors are collinear. It also follows that the 
projected vector has the same direction as the first canonical 
vector which justifies frequent observations that logistic fit 
yields well performing classifiers even if misspecification is 
expected. In the special case of additive binary model with 
multivariate normal predictors and when response function q
is a convex combination of univariate responses we show that 
the variance of β∗TX is not larger than the maximal variance 
of the projected linear combinations for the corresponding 
univariate problems. In the case of balanced additive logistic 
model it follows that the contribution of βi to β∗ is bounded 
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by the corresponding coefficient in the convex representation 
of response function q.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider a general binary model for which probability of a positive outcome Y = 1
given vector of random predictors X = (X1, . . . , Xp)T is semi-parametrically modelled 
as

P(Y = 1|X) = q(βT
1 X, . . . , βT

k X), (1)

where q is an unknown response function, k ≤ p and β1, . . . , βk ∈ Rp are unknown col-
umn vectors of parameters. This is the parsimonious model yielding a flexible approach 
to binary dependence which is used frequently for dimension reduction and which encom-
passes e.g. the projection pursuit regression model (cf. e.g. [1]). It is known that equation 
(1) is equivalent to an apparently more general equality that Y = h(βT

1 X, . . . , βT
k X, ε), 

where ε is a random variable independent of X (cf. [2], Lemma 1). In the following we will 
use vectorized version of the response function and write q(BTX) = q(βT

1 X, . . . , βT
k X), 

putting B = [β1, . . . , βk] ∈ Rp×k. Note that we follow the usual convention (cf. [1]) of 
not explicitly defining the intercepts in (1). They may be included in the model by a 
suitable modification of function q.

There are several approaches to estimate sufficient dimension reduction directions 
β1, . . . , βk, the most popular being Sliced Inverse Regression (SIR) method developed by 
[1] and [3], see [4] for recent developments. Here we consider inference issues arising when 
model (1) is misspecified as logistic regression model. Namely, to the data pertaining to 
(1) we fit the logistic regression model i.e. we postulate that the posterior probability 
that Y = 1 given X = x is of the form

qL(γ0 + xT γ) = exp(γ0 + xT γ)/[1 + exp(γ0 + xT γ)], (2)

where γ0 ∈ R, γ ∈ Rp are parameters. Our main interest here is the situation when the 
logistic model (2) is misspecified i.e. when k �= 1 or when k = 1 but q(s) = qL(as + b)
for all s ∈ R does not hold for any a, b ∈ R. Obviously, when k = 1 and q ≡ qL we 
consider fitting of the logistic regression to a correctly specified conditional distribution. 
The problem has been studied for k = 1 with important contributions by [5], [6] and [7]
among others, for a recent contribution and more references see [8]. The logistic model 
(2) is an ubiquitous modelling tool, however frequently it is applied without convincing 
evidence that it is adequate. We thus believe that misspecification case is common and 
its consequences are worth studying.
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