Linear Algebra and its Applications 524 (2017) 109–152 $\,$

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Inflation algorithm for loop-free non-negative edge-bipartite graphs of corank at least two

LINEAR Algebra

Applications

Daniel Simson^{*}, Katarzyna Zając

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

ARTICLE INFO

Article history: Received 8 January 2017 Accepted 14 February 2017 Available online 28 February 2017 Submitted by R. Brualdi

MSC: 05C22 05C50 06A11 15A63 68R05 68W30

Keywords: Signed graph Edge-bipartite graph Corank Dynkin type Coxeter spectrum Inflation algorithm Gram matrix

ABSTRACT

We continue the study of finite connected loop-free edgebipartite graphs Δ , with $m \geq 3$ vertices (a class of signed graphs), we started in Simson (2013) [48] and M. Gasiorek et al. (2016) [19] by means of the non-symmetric Gram matrix $\dot{G}_{\Delta} \in \mathbb{M}_m(\mathbb{Z})$ of Δ , its symmetric Gram matrix $G_{\Delta} := \frac{1}{2} [\check{G}_{\Delta} + \check{G}_{\Delta}^{tr}] \in \mathbb{M}_m(\frac{1}{2}\mathbb{Z}), \text{ and the Gram quadratic}$ form $q_{\Delta} : \mathbb{Z}^m \to \mathbb{Z}$. In particular, we study connected nonnegative edge-bipartite graphs Δ , with $n + r \geq 3$ vertices of corank $r \geq 2$, in the sense that the symmetric Gram matrix $G_{\Delta} \in \mathbb{M}_{n+r}(\mathbb{Z})$ of Δ is positive semi-definite of rank $n \geq 1$. The edge-bipartite graphs Δ of corank $r \geq 2$ are studied, up to the weak Gram \mathbb{Z} -congruence $\Delta \sim_{\mathbb{Z}} \Delta'$, where $\Delta \sim_{\mathbb{Z}} \Delta'$ means that $G_{\Delta'} = B^{tr} \cdot G_{\Delta} \cdot B$, for some $B \in \mathbb{M}_{n+r}(\mathbb{Z})$ such that det $B = \pm 1$. Our main result of the paper asserts that, given a connected edge-bipartite graph Δ with $n + r \geq 3$ vertices of corank $r \geq 2$, there exists a suitably chosen sequence \mathbf{t}_*^- of the inflation operators of the form $\Delta' \mapsto \mathbf{t}_{ab}^- \Delta'$ such that the composite operator $\Delta \mapsto \mathbf{t}_*^- \Delta$ reduces Δ to a connected bigraph $\widehat{D}_n^{(r)}$ such that $\Delta \sim_{\mathbb{Z}} \widehat{D}_n^{(r)}$ and $\widehat{D}_n^{(r)}$ is one of the canonical r-vertex extensions $\widehat{\mathbb{A}}_{n}^{(r)}$, $n \geq 1$, $\widehat{\mathbb{D}}_{n}^{(r)}$, $n \geq 4$, $\widehat{\mathbb{E}}_{6}^{(r)}$, $\widehat{\mathbb{E}}_{7}^{(r)}$, and $\widehat{\mathbb{E}}_{8}^{(r)}$, with n + r vertices, of the simply laced Dynkin diagrams $\mathbb{A}_n, \mathbb{D}_n, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8$, with $n \ge 1$ vertices. The algorithm constructs also a matrix $B \in \mathbb{M}_{n+r}(\mathbb{Z})$, with

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2017.02.021} 0024-3795 \end{tabular} 0024-3795 \end{tabular} 0217 \ Elsevier \ Inc. \ All \ rights \ reserved.$

E-mail addresses: simson@mat.umk.pl (D. Simson), zajac@mat.umk.pl (K. Zając).

det $B = \pm 1$, defining the weak Gram \mathbb{Z} -congruence $\Delta \sim_{\mathbb{Z}} \widehat{D}_n^{(r)}$, that is, satisfying the equation $G_{\widehat{D}_n^{(r)}} = B^{tr} \cdot G_{\Delta} \cdot B$. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

We continue the study of loop-free edge-bipartite graphs Δ (i.e., a class of signed graphs with a separation property) we started in [48] and developed in [52] and [19]. Here we concentrate on a Gram classification of all loop-free edge-bipartite graphs that are non-negative of a fixed corank $r \geq 2$. A motivation for the study of edge-bipartite graphs is given in [48], where also a related algebraic framework is introduced.

Throughout, we freely use the terminology and notation introduced in [48,52,19]. We denote by \mathbb{N} the set of non-negative integers, by \mathbb{Z} the ring of integers, and by $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ the field of the rational, the real, and the complex numbers, respectively. Given a non-empty set I, we view \mathbb{Z}^{I} , as a free abelian group and, given $m \geq 1$, we view \mathbb{Z}^{m} as a free abelian group. We denote by e_1, \ldots, e_m the standard \mathbb{Z} -basis of \mathbb{Z}^m .

By $\mathbb{M}_m(\mathbb{Z})$ we denote the \mathbb{Z} -algebra of all square *m* by *m* matrices $A = [a_{ij}]$, with $a_{ij} \in \mathbb{Z}$, and by $E \in \mathbb{M}_m(\mathbb{Z})$ the identity matrix. The transpose of *A* is denoted by A^{tr} , and we set $A^{-tr} = (A^{tr})^{-1} = (A^{-1})^{tr}$, for $A \in \mathrm{Gl}(m, \mathbb{Z})$. The group

$$\operatorname{Gl}(m,\mathbb{Z}) := \{A \in \mathbb{M}_m(\mathbb{Z}), \det A \in \{-1,1\}\} \subseteq \mathbb{M}_m(\mathbb{Z})$$

is called the (integral) general linear group. Given $A \in \mathbb{M}_m(\mathbb{Z})$ and $B \in \mathrm{Gl}(m,\mathbb{Z})$, we set $A * B := B^{tr} \cdot A \cdot B$. It is easy to check that the operation

$$*: \mathbb{M}_m(\mathbb{Z}) \times \mathrm{Gl}(m, \mathbb{Z}) \to \mathbb{M}_m(\mathbb{Z}), \quad (A, B) \mapsto A * B,$$

is a right group action of the group $\operatorname{Gl}(m,\mathbb{Z})$ on the abelian group $\mathbb{M}_m(\mathbb{Z})$.

By an **edge-bipartite graph** (for short: **bigraph**) with $m \geq 1$ vertices, we mean a signed (multi)graph (Δ, σ) , where $\Delta = (\Delta_0, \Delta_1)$ is a (multi)graph with the finite set of vertices Δ_0 of cardinality $m \geq 1$ and the finite (multi)set of edges Δ_1 , and $\sigma = (\sigma_0, \sigma_1)$ is a pair, with the sign map $\sigma_1 : \Delta_1 \to \{-1, +1\}$ and the labeling bijection $\sigma_0 : \Delta_0 \to \{1, 2, \ldots, m\}$, compare with [57]. Moreover, we assume that, given $a, b \in \Delta_0$, the sign map $\sigma_1 : \Delta_1(a, b) \to \{-1, +1\}$ is constant on the set $\Delta_1(a, b) = \Delta_1(b, a) \subset \Delta_1$ of all edges $\beta \in \Delta_1$ such that a and b are adjacent with β . In other words, $\sigma_1(\beta) = \sigma_1(\gamma)$, for all $\beta, \gamma \in \Delta_1(a, b)$. We set

$$\begin{aligned} \Delta_1^-(a,b) &= \Delta_1^-(b,a) = \{\beta \in \Delta_1(a,b); \quad \sigma_1(\beta) = -1\} \\ \Delta_1^+(a,b) &= \Delta_1^+(b,a) = \{\beta \in \Delta_1(a,b); \quad \sigma_1(\beta) = 1\}. \end{aligned}$$

Download English Version:

https://daneshyari.com/en/article/5773050

Download Persian Version:

https://daneshyari.com/article/5773050

Daneshyari.com