Twisted centralizer codes

Adel Alahmadi ${ }^{\text {a }}$, S.P. Glasby ${ }^{\mathrm{b}, \mathrm{c}, *}$, Cheryl E. Praeger ${ }^{\mathrm{a}, \mathrm{b}}$, Patrick Solé ${ }^{\mathrm{d}}$, Bahattin Yildiz ${ }^{e}$
${ }^{\text {a }}$ Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia
${ }^{\mathrm{b}}$ Center for Mathematics of Symmetry and Computation, University of Western Australia, 35 Stirling Highway, WA 6009, Australia
${ }^{\text {c }}$ The Department of Mathematics, University of Canberra, ACT 2601, Australia
${ }^{\text {d }}$ CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93526 Saint-Denis, France
e University of Chester, UK

A R T I C L E I N F O

Article history:

Received 17 August 2016
Accepted 12 March 2017
Available online 16 March 2017
Submitted by R. Brualdi

MSC:

primary 94B05
secondary 13M05
Keywords:
Linear codes
Matrix codes
Minimal distance
Group centralizers

Abstract

Given an $n \times n$ matrix A over a field F and a scalar $a \in F$, we consider the linear codes $C(A, a):=\{B \in$ $\left.F^{n \times n} \mid A B=a B A\right\}$ of length n^{2}. We call $C(A, a)$ a twisted centralizer code. We investigate properties of these codes including their dimensions, minimum distances, parity-check matrices, syndromes, and automorphism groups. The minimal distance of a centralizer code (when $a=1$) is at most n, however for $a \neq 0,1$ the minimal distance can be much larger, as large as n^{2}.

Crown Copyright © 2017 Published by Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Denote the $n \times n$ matrices over a field F by $F^{n \times n}$. Fix a matrix $A \in F^{n \times n}$ and a scalar $a \in F$. As we are motivated by applications to coding theory we focus on the case where F is a finite field \mathbb{F}_{q} of order q. The centralizer of A, twisted by a, is defined to be

$$
\begin{equation*}
C(A, a):=\left\{B \in F^{n \times n} \mid A B=a B A\right\} \tag{1}
\end{equation*}
$$

Clearly $C(A, a)$ is an F-linear subspace of the vector space $F^{n \times n}$. Note that $C(A, 0)$ is the right-annihilator of A. We shall use the notation $C(A)$ instead of $C(A, 1)$ when $a=1$, and note that $C(A)$ is simply the centralizer of A. The subspace $C(A, a)$ of $F^{n \times n}$ is viewed as code: we view a codeword $B \in F^{n \times n}$ as column vector $[B]$ of length n^{2}, by reading the matrix B column-by-column. The case $a=1$ was considered in [1]. In the present paper, we extend and sometimes correct the results of [1]. In particular the incorrect [1, Theorem 2.4] is corrected and generalized for this larger class of codes in [2] (see Theorem 2.3), and we exploit this result in several ways in Section 2.2.

Definition 1. For any $n \times n$ matrix $A \in F^{n \times n}$ and any scalar $a \in F$, the subspace $C(A, a)$ formed above is called the centralizer code obtained from A and twisted by a.

In a sense A serves as a parity-check matrix, because B lies in $C(A, a)$ precisely when $A B-a B A=0$. More concretely, in the following result we show that a certain $n^{2} \times n^{2}$ matrix H related to A is a parity check matrix in the sense that $B \in C(A, a)$ if and only if $H[B]=0$, where $[B]$ is the n^{2}-dimensional column vector above corresponding to B.

Proposition 1.1. A parity-check matrix for $C(A, a)$ is given by

$$
H=I_{n} \otimes A-a\left(A^{t} \otimes I_{n}\right)
$$

where \otimes denotes the Kronecker product, and A^{t} the transpose of the matrix A.
Proof. This follows from the proof of [10, Theorem 27.5.1, p. 124] with $A=A, B=a A$, $C=0$. Also, a direct proof (for row vectors) is given in [2, Lemma 3.2].

The following simple observations involving $C(A, a)$ will be used later.
Theorem 1.2. Suppose $a, a^{\prime} \in F$ and $A \in F^{n \times n}$ is a matrix. Then the following are true:
a) $A \in C(A, a)$ if and only if $a=1$ or $A^{2}=0$.
b) If $B \in C(A, a)$ and $B^{\prime} \in C\left(A, a^{\prime}\right)$ then $B B^{\prime}$ and $B^{\prime} B$ both lie in $C\left(A, a a^{\prime}\right)$.
c) For $a \neq 0, B \in C(A, a) \Leftrightarrow A \in C\left(B, a^{-1}\right)$.

https://daneshyari.com/en/article/5773055

Download Persian Version:

https://daneshyari.com/article/5773055

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Stephen.Glasby@uwa.edu.au (S.P. Glasby), Cheryl.Praeger@uwa.edu.au (C.E. Praeger), sole@enst.fr (P. Solé), bahattinyildiz@gmail.com (B. Yildiz).

