

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Twisted centralizer codes

LINEAR ALGEBRA

plications

Adel Alahmadi^a, S.P. Glasby^{b,c,*}, Cheryl E. Praeger^{a,b}, Patrick Solé^d, Bahattin Yildiz^e

^a Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia

^b Center for Mathematics of Symmetry and Computation, University of Western Australia, 35 Stirling Highway, WA 6009, Australia

^c The Department of Mathematics, University of Canberra, ACT 2601, Australia ^d CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526 Saint-Denis, France

^e University of Chester, UK

ARTICLE INFO

Article history: Received 17 August 2016 Accepted 12 March 2017 Available online 16 March 2017 Submitted by R. Brualdi

MSC: primary 94B05 secondary 13M05

Keywords: Linear codes Matrix codes Minimal distance Group centralizers

ABSTRACT

Given an $n \times n$ matrix A over a field F and a scalar $a \in F$, we consider the linear codes $C(A, a) := \{B \in F^{n \times n} \mid AB = aBA\}$ of length n^2 . We call C(A, a) a twisted centralizer code. We investigate properties of these codes including their dimensions, minimum distances, parity-check matrices, syndromes, and automorphism groups. The minimal distance of a centralizer code (when a = 1) is at most n, however for $a \neq 0, 1$ the minimal distance can be much larger, as large as n^2 .

Crown Copyright © 2017 Published by Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: Stephen.Glasby@uwa.edu.au (S.P. Glasby), Cheryl.Praeger@uwa.edu.au (C.E. Praeger), sole@enst.fr (P. Solé), bahattinyildiz@gmail.com (B. Yildiz).

http://dx.doi.org/10.1016/j.laa.2017.03.011

0024-3795/Crown Copyright © 2017 Published by Elsevier Inc. All rights reserved.

1. Introduction

Denote the $n \times n$ matrices over a field F by $F^{n \times n}$. Fix a matrix $A \in F^{n \times n}$ and a scalar $a \in F$. As we are motivated by applications to coding theory we focus on the case where F is a finite field \mathbb{F}_q of order q. The *centralizer of* A, *twisted by* a, is defined to be

$$C(A,a) := \{ B \in F^{n \times n} \mid AB = aBA \}.$$

$$\tag{1}$$

Clearly C(A, a) is an *F*-linear subspace of the vector space $F^{n \times n}$. Note that C(A, 0) is the right-annihilator of *A*. We shall use the notation C(A) instead of C(A, 1) when a = 1, and note that C(A) is simply the centralizer of *A*. The subspace C(A, a) of $F^{n \times n}$ is viewed as code: we view a codeword $B \in F^{n \times n}$ as column vector [*B*] of length n^2 , by reading the matrix *B* column-by-column. The case a = 1 was considered in [1]. In the present paper, we extend and sometimes correct the results of [1]. In particular the incorrect [1, Theorem 2.4] is corrected and generalized for this larger class of codes in [2] (see Theorem 2.3), and we exploit this result in several ways in Section 2.2.

Definition 1. For any $n \times n$ matrix $A \in F^{n \times n}$ and any scalar $a \in F$, the subspace C(A, a) formed above is called the *centralizer code* obtained from A and *twisted by a*.

In a sense A serves as a parity-check matrix, because B lies in C(A, a) precisely when AB - aBA = 0. More concretely, in the following result we show that a certain $n^2 \times n^2$ matrix H related to A is a parity check matrix in the sense that $B \in C(A, a)$ if and only if H[B] = 0, where [B] is the n^2 -dimensional column vector above corresponding to B.

Proposition 1.1. A parity-check matrix for C(A, a) is given by

$$H = I_n \otimes A - a(A^t \otimes I_n),$$

where \otimes denotes the Kronecker product, and A^t the transpose of the matrix A.

Proof. This follows from the proof of [10, Theorem 27.5.1, p. 124] with A = A, B = aA, C = 0. Also, a direct proof (for row vectors) is given in [2, Lemma 3.2]. \Box

The following simple observations involving C(A, a) will be used later.

Theorem 1.2. Suppose $a, a' \in F$ and $A \in F^{n \times n}$ is a matrix. Then the following are true:

a) A ∈ C(A, a) if and only if a = 1 or A² = 0.
b) If B ∈ C(A, a) and B' ∈ C(A, a') then BB' and B'B both lie in C(A, aa').
c) For a ≠ 0, B ∈ C(A, a) ⇔ A ∈ C(B, a⁻¹).

236

Download English Version:

https://daneshyari.com/en/article/5773055

Download Persian Version:

https://daneshyari.com/article/5773055

Daneshyari.com