Rational factorizations of completely positive matrices

Mathieu Dutour Sikirić ${ }^{\text {a }}$, Achill Schürmann ${ }^{\text {b }}$, Frank Vallentin ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Rudjer Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
b Universität Rostock, Institute of Mathematics, 18051 Rostock, Germany
${ }^{\text {c }}$ Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany

A R T I C L E I N F O

Article history:

Received 17 January 2017
Accepted 5 February 2017
Available online xxxx
Submitted by R. Brualdi

MSC:

90C25

Keywords:
Copositive programming
Completely positive matrix
cp-factorization

A B S T R A C T

In this note it is proved that every rational matrix which lies in the interior of the cone of completely positive matrices also has a rational cp-factorization.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The cone of completely positive matrices is central to copositive programming, see [3] and also for several topics in matrix theory, see [1]. However, so far, this cone is quite mysterious, many basic questions about it are open. In [2] Berman, Dür, and

[^0]Shaked-Monderer ask: Given a matrix $A \in \mathcal{C} \mathcal{P}_{n}$ all of whose entries are integral, does A always have a rational cp-factorization?

The cone of completely positive matrices is defined as the convex cone spanned by symmetric rank-1-matrices $x x^{\top}$ where x lies in the nonnegative orthant $\mathbb{R}_{\geq 0}^{n}$:

$$
\mathcal{C} \mathcal{P}_{n}=\operatorname{cone}\left\{x x^{\top}: x \in \mathbb{R}_{\geq 0}^{n}\right\}
$$

A cp-factorization of a matrix A is a factorization of the form

$$
A=\sum_{i=1}^{m} \alpha_{i} x_{i} x_{i}^{\top} \quad \text { with } \alpha_{i} \geq 0 \text { and } x_{i} \in \mathbb{R}_{\geq 0}^{n}, \quad \text { for } i=1, \ldots, m
$$

We talk about a rational cp-factorization when the α_{i} 's are rational numbers and when the x_{i} 's are rational vectors. Of course, in a rational cp-factorization we can assume that the x_{i} 's are integral vectors.

In this note we prove the following theorem:
Theorem 1.1. Every rational matrix which lies in the interior of the cone of completely positive matrices has a rational cp-factorization.

So to fully answer the question of Berman, Dür, and Shaked-Monderer, it remains to consider the boundary of $\mathcal{C} \mathcal{P}_{n}$.

2. Proof of Theorem 1.1

For the proof we will need a classical result from simultaneous Diophantine approximation, a theorem of Dirichlet, which we state here. One can find a proof of Dirichlet's theorem for example in the book [4, Theorem 5.2.1] of Grötschel, Lovász, and Schrijver.

Theorem 2.1. Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers and let ε be a real number with $0<\varepsilon<1$. Then there exist integers p_{1}, \ldots, p_{n} and a natural number q with $1 \leq q \leq \varepsilon^{-n}$ such that

$$
\left|\alpha_{i}-\frac{p_{i}}{q}\right| \leq \frac{\varepsilon}{q} \quad \text { for all } i=1, \ldots, n .
$$

The next lemma collects standard, easy-to-prove facts about convex cones. Let E be a Euclidean space with inner product $\langle\cdot, \cdot\rangle$. Let $K \subseteq E$ be a proper convex cone, which means that K is closed, has a nonempty interior, and satisfies $K \cap(-K)=\{0\}$. Its dual cone is defined as $K^{*}=\{y \in E:\langle x, y\rangle \geq 0$ for all $x \in K\}$.

Lemma 2.2. Let $K \subseteq E$ be a proper convex cone. Then,

$$
\begin{equation*}
\operatorname{int}(K)=\left\{x \in E:\langle x, y\rangle>0 \text { for all } y \in K^{*} \backslash\{0\}\right\} \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/5773068

Download Persian Version:

https://daneshyari.com/article/5773068

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mathieu.dutour@gmail.com (M. Dutour Sikirić), achill.schuermann@uni-rostock.de (A. Schürmann), frank.vallentin@uni-koeln.de (F. Vallentin).

