An improved upper bound for the number of distinct eigenvalues of a matrix after perturbation

Xuefeng Xu
Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

```
A R T I C L E I N F O
```


Article history:

Received 27 May 2016
Accepted 15 February 2017
Submitted by P. Semrl

MSC:

15A18
65 F 15
47A55

Keywords:
Distinct eigenvalues
Perturbation
Defectivity
Derogatory index

Abstract

An upper bound for the number of distinct eigenvalues of a perturbed matrix has been recently established by P. E. Farrell [1, Theorem 1.3]. The estimate is the central result in Farrell's work and can be applied to estimate the number of Krylov iterations required for solving a perturbed linear system. In this paper, we present an improved upper bound for the number of distinct eigenvalues of a matrix after perturbation. Furthermore, some results based on the improved estimate are presented.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The spectrum of a matrix after perturbation has been investigated by many authors. However, most work is devoted to discussing some special cases, especially the case of symmetric rank-one perturbations; see, for instance, [2-5]. Recently, P. E. Farrell [1] presented an upper bound for the number of distinct eigenvalues of arbitrary matrices perturbed by updates of arbitrary rank. Let $\mathbb{C}^{n \times n}, \Lambda(\cdot), \operatorname{rank}(\cdot)$, and $|\cdot|$ be the set of

[^0]all $n \times n$ complex matrices, the set of all distinct eigenvalues of a matrix, the rank of a matrix, and the cardinality of a set, respectively. Let $A, B \in \mathbb{C}^{n \times n}$, and let $C=A+B$. It is proved by Farrell [1, Theorem 1.3] that
\[

$$
\begin{equation*}
|\Lambda(C)| \leq(\operatorname{rank}(B)+1)|\Lambda(A)|+d(A) \tag{1.1}
\end{equation*}
$$

\]

where $d(\cdot)$ denotes the defectivity of a matrix (see Definition 2.2 below). The result can be used to estimate the number of Krylov iterations for solving a linear system.

It follows from the definitions of $\Lambda(\cdot)$ and $|\cdot|$ that $|\Lambda(M)| \leq n$ for all $M \in \mathbb{C}^{n \times n}$. Given $A \in \mathbb{C}^{n \times n}$, we can observe that the estimate (1.1) is mainly of interest in the situation that $\operatorname{rank}(B)$ is small, that is to say, B is a low-rank perturbation. More specifically, if $\operatorname{rank}(B) \leq \frac{n-d(A)}{|\Lambda(A)|}-1$, then $(\operatorname{rank}(B)+1)|\Lambda(A)|+d(A)(\leq n)$ is an applicable upper bound. On the other hand, if $\operatorname{rank}(B)>\frac{n-d(A)}{|\Lambda(A)|}-1$, then $(\operatorname{rank}(B)+1)|\Lambda(A)|+d(A)$ $(>n)$ is a trivial upper bound.

Nevertheless, the estimate (1.1) is not sharp in certain cases. We now give a specific example to illustrate the defect of (1.1). Let λ_{0} be an arbitrary complex number. We choose a matrix A as follows:

$$
A=\left(\begin{array}{ccccc}
\lambda_{0} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{0} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{0} & 1 \\
0 & 0 & \cdots & 0 & \lambda_{0}
\end{array}\right)
$$

which is an $n \times n$ Jordan block. Thus, $|\Lambda(A)|=1$ and $d(A)=n-1$. Let $n \times n$ matrix B_{r} with rank $r(1 \leq r \leq n-1)$ be defined by

$$
B_{r}=\left(\begin{array}{cc}
T_{r} & O_{r \times(n-r-1)} \\
O_{(n-r) \times(r+1)} & O_{(n-r) \times(n-r-1)}
\end{array}\right), \quad T_{r}=\left(\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & 2 & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & r & -1
\end{array}\right) .
$$

Hence, the upper bound in (1.1) is $\left(\operatorname{rank}\left(B_{r}\right)+1\right)|\Lambda(A)|+d(A)=n+r>n$. In this case, the upper bound in (1.1) is always invalid (i.e., the upper bound is strictly greater than order n) for all $1 \leq r \leq n-1$.

In this paper, we give an improved upper bound for the number of distinct eigenvalues of a matrix after perturbation. Under the same assumptions, we establish that

$$
\begin{equation*}
|\Lambda(C)| \leq(\operatorname{rank}(B)+1)|\Lambda(A)|+d(A)-d(C) \tag{1.2}
\end{equation*}
$$

Applying (1.2) to the above example, we can derive that the improved upper bound of $\left|\Lambda\left(C_{r}\right)\right|$ (here $\left.C_{r}=A+B_{r}\right)$ is $\left(\operatorname{rank}\left(B_{r}\right)+1\right)|\Lambda(A)|+d(A)-d\left(C_{r}\right)=(n+r)-(n-1-r)=$ $2 r+1$, which is an applicable upper bound, especially in low-rank perturbations.

https://daneshyari.com/en/article/5773073

Download Persian Version:
https://daneshyari.com/article/5773073

Daneshyari.com

[^0]: E-mail address: xuxuefeng@1sec.cc.ac.cn.

