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We show that every spectral shift function of an even order 
η2k is nonnegative outside the convex hull of the spectrum of 
an initial operator cvhσ(H); every spectral shift function of 
an odd order η2k−1 is nonnegative (respectively, nonpositive) 
outside cvhσ(H) whenever a perturbation is nonnegative 
(respectively, nonpositive). We also derive several sufficient 
conditions for positivity of η2k and η2k−1 on the whole real 
line.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a separable Hilbert space; let B(H) denote the algebra of bounded linear 
operators on H and Sn the nth Schatten class of operators in B(H). Let σ(H) denote 
the spectrum of H ∈ B(H) and cvhσ(H) the convex hull of the set σ(H). The following 
result is established in [4,3], and [5] for n = 1, n = 2, and n ≥ 3, respectively.

Theorem 1.1. Let H = H∗ ∈ B(H) and V = V ∗ ∈ Sn. Then, there exists a unique 
ηn ∈ L1(R), called the spectral shift function of order n, such that
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f (n)(t) ηn(t) dt, (1.1)

for every f ∈ Cn+1(R).

It is well known that η2 is positive (≥ 0) and that η1 for a sign-definite perturbation 
V has the same sign as V does. These facts can be derived from [1]; they are also proved 
via a multiple operator integration approach in Proposition 3.3. Sign-definiteness of η1

is also discussed in [7, Section 8.2, Theorem 1]. In this paper, we address the following 
questions on sign-definiteness of higher order spectral shift functions.

Question 1.2. Let H = H∗ ∈ B(H), n ∈ N be even, and V = V ∗ ∈ Sn. Is ηn positive?

Question 1.3. Let H = H∗ ∈ B(H), n ∈ N be odd, and V = V ∗ ∈ Sn be positive 
(respectively, negative). Is ηn positive (respectively, negative)?

It is simple to see via the multiple operator integration approach that Questions 1.2
and 1.3 have affirmative answers for every n ∈ N when H and V commute (see Propo-
sition 3.4). We establish the following partial answers to these questions in the case of 
noncommuting H and V .

Theorem 1.4. Let H = H∗ ∈ B(H), n ∈ N, and V = V ∗ ∈ Sn. Denote [a, b] = cvhσ(H). 
Then, the following assertions hold.

(i) If n is even, then ηn(t) ≥ 0 for a.e. t ∈ R\[a, b].
(ii) If n is odd and V ≥ 0 (respectively, V ≤ 0), then ηn(t) ≥ 0 (respectively, ηn(t) ≤ 0) 

for a.e. t ∈ R\[a, b].
(iii) Let n ∈ N. If V ≥ 0, then ηn(t) = 0 for a.e. t < a; if V ≤ 0, then ηn(t) = 0 for a.e. 

t > b.

Let H = H∗ ∈ B(H), n ∈ N, V = V ∗ ∈ Sn, and t ∈ [0, 1] be fixed and let Et denote 
the spectral measure of H + tV . Let ω(n)

t denote the set function

ω
(n)
t (A1, A2, . . . , An) := Tr

(
Et(A1)V Et(A2)V . . . Et(An)V

)
, (1.2)

where A1, A2, . . . , An are Borel subsets of R. When V ∈ S2, the set function ω(n)
t extends 

to a finite Borel measure on Rn (see, e.g., [2, Theorem 4.1 and Remark 4.2]).
The following theorem gives a sufficient condition for positivity of ηn on R.

Theorem 1.5. Let H = H∗ ∈ B(H), n ∈ N, and V = V ∗ ∈ Sn. If for a.e. t ∈ [0, 1], 
ω

(n)
t (A1, . . . , An) ≥ 0 for all Borel subsets A1, . . . , An of R, then ηn ≥ 0.
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