

Contents lists available at ScienceDirect Linear Algebra and its Applications

www.elsevier.com/locate/laa

On positivity of spectral shift functions

Anna Skripka¹

Department of Mathematics and Statistics, University of New Mexico, 400 Yale Blvd NE, MSC01 1115, Albuquerque, NM 87131, USA

ARTICLE INFO

Article history: Received 3 August 2016 Accepted 17 February 2017 Available online 24 February 2017 Submitted by V. Muller

MSC: primary 47A55 secondary 15A99, 47B10

Keywords: Spectral shift function Multiple operator integral

ABSTRACT

We show that every spectral shift function of an even order η_{2k} is nonnegative outside the convex hull of the spectrum of an initial operator $\operatorname{cvh} \sigma(H)$; every spectral shift function of an odd order η_{2k-1} is nonnegative (respectively, nonpositive) outside $\operatorname{cvh} \sigma(H)$ whenever a perturbation is nonnegative (respectively, nonpositive). We also derive several sufficient conditions for positivity of η_{2k} and η_{2k-1} on the whole real line.

 $\ensuremath{\textcircled{O}}$ 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a separable Hilbert space; let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} and \mathcal{S}^n the *n*th Schatten class of operators in $\mathcal{B}(\mathcal{H})$. Let $\sigma(H)$ denote the spectrum of $H \in \mathcal{B}(\mathcal{H})$ and $\operatorname{cvh} \sigma(H)$ the convex hull of the set $\sigma(H)$. The following result is established in [4,3], and [5] for n = 1, n = 2, and $n \geq 3$, respectively.

Theorem 1.1. Let $H = H^* \in \mathcal{B}(\mathcal{H})$ and $V = V^* \in \mathcal{S}^n$. Then, there exists a unique $\eta_n \in L^1(\mathbb{R})$, called the spectral shift function of order n, such that

LINEAR

lications

E-mail address: skripka@math.unm.edu.

¹ Research supported in part by NSF grant DMS-1500704.

A. Skripka / Linear Algebra and its Applications 523 (2017) 118-130

$$\operatorname{Tr}\left(f(H+V) - f(H) - \sum_{k=0}^{n-1} \frac{1}{k!} \frac{d^k}{dt^k} \bigg|_{t=0} f(H+tV)\right) = \int_{\mathbb{R}} f^{(n)}(t) \eta_n(t) dt, \quad (1.1)$$

for every $f \in C^{n+1}(\mathbb{R})$.

It is well known that η_2 is positive (≥ 0) and that η_1 for a sign-definite perturbation V has the same sign as V does. These facts can be derived from [1]; they are also proved via a multiple operator integration approach in Proposition 3.3. Sign-definiteness of η_1 is also discussed in [7, Section 8.2, Theorem 1]. In this paper, we address the following questions on sign-definiteness of higher order spectral shift functions.

Question 1.2. Let $H = H^* \in \mathcal{B}(\mathcal{H})$, $n \in \mathbb{N}$ be even, and $V = V^* \in \mathcal{S}^n$. Is η_n positive?

Question 1.3. Let $H = H^* \in \mathcal{B}(\mathcal{H})$, $n \in \mathbb{N}$ be odd, and $V = V^* \in \mathcal{S}^n$ be positive (respectively, negative). Is η_n positive (respectively, negative)?

It is simple to see via the multiple operator integration approach that Questions 1.2 and 1.3 have affirmative answers for every $n \in \mathbb{N}$ when H and V commute (see Proposition 3.4). We establish the following partial answers to these questions in the case of noncommuting H and V.

Theorem 1.4. Let $H = H^* \in \mathcal{B}(\mathcal{H})$, $n \in \mathbb{N}$, and $V = V^* \in \mathcal{S}^n$. Denote $[a, b] = \operatorname{cvh} \sigma(H)$. Then, the following assertions hold.

- (i) If n is even, then $\eta_n(t) \ge 0$ for a.e. $t \in \mathbb{R} \setminus [a, b]$.
- (ii) If n is odd and $V \ge 0$ (respectively, $V \le 0$), then $\eta_n(t) \ge 0$ (respectively, $\eta_n(t) \le 0$) for a.e. $t \in \mathbb{R} \setminus [a, b]$.
- (iii) Let $n \in \mathbb{N}$. If $V \ge 0$, then $\eta_n(t) = 0$ for a.e. t < a; if $V \le 0$, then $\eta_n(t) = 0$ for a.e. t > b.

Let $H = H^* \in \mathcal{B}(\mathcal{H}), n \in \mathbb{N}, V = V^* \in \mathcal{S}^n$, and $t \in [0, 1]$ be fixed and let E_t denote the spectral measure of H + tV. Let $\omega_t^{(n)}$ denote the set function

$$\omega_t^{(n)}(A_1, A_2, \dots, A_n) := \text{Tr}\left(E_t(A_1)VE_t(A_2)V\dots E_t(A_n)V\right),$$
(1.2)

where A_1, A_2, \ldots, A_n are Borel subsets of \mathbb{R} . When $V \in S^2$, the set function $\omega_t^{(n)}$ extends to a finite Borel measure on \mathbb{R}^n (see, e.g., [2, Theorem 4.1 and Remark 4.2]).

The following theorem gives a sufficient condition for positivity of η_n on \mathbb{R} .

Theorem 1.5. Let $H = H^* \in \mathcal{B}(\mathcal{H})$, $n \in \mathbb{N}$, and $V = V^* \in \mathcal{S}^n$. If for a.e. $t \in [0,1]$, $\omega_t^{(n)}(A_1, \ldots, A_n) \ge 0$ for all Borel subsets A_1, \ldots, A_n of \mathbb{R} , then $\eta_n \ge 0$.

Download English Version:

https://daneshyari.com/en/article/5773074

Download Persian Version:

https://daneshyari.com/article/5773074

Daneshyari.com