

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Dilations, wandering subspaces, and inner functions

LINEAR

olications

M. Bhattacharjee ^a, J. Eschmeier ^b, Dinesh K. Keshari ^{c,1}, Jaydeb Sarkar ^{c,*}

^a Indian Institute of Science, Department of Mathematics, Bangalore, 560012, India

^b Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany

 $^{\rm c}$ Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India

ARTICLE INFO

Article history: Received 18 October 2016 Accepted 21 February 2017 Available online 24 February 2017 Submitted by V. Muller

MSC: primary 47A13 secondary 46E22, 47A15, 47A20, 47A45

Keywords: Dilations Joint invariant subspaces Wandering subspaces Drury–Arveson space Reproducing kernel Hilbert spaces Multipliers Inner functions

ABSTRACT

The objective of this paper is to study wandering subspaces for commuting tuples of bounded operators on Hilbert spaces. It is shown that, for a large class of analytic functional Hilbert spaces \mathcal{H}_K on the unit ball in \mathbb{C}^n , wandering subspaces for restrictions of the multiplication tuple $M_z = (M_{z_1}, \ldots, M_{z_n})$ can be described in terms of suitable \mathcal{H}_K -inner functions. We prove that \mathcal{H}_K -inner functions are contractive multipliers and deduce a result on the multiplier norm of quasi-homogeneous polynomials as an application. Along the way we prove a refinement of a result of Arveson on the uniqueness of minimal dilations of pure row contractions.

© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: monojit12@math.iisc.ernet.in (M. Bhattacharjee), eschmei@math.uni-sb.de

⁽J. Eschmeier), dinesh@niser.ac.in (D.K. Keshari), jay@isibang.ac.in, jaydeb@gmail.com (J. Sarkar).

¹ Present address: National Institute of Science Education and Research, HBNI, Bhubaneswar, Via-Jatani, Khurda, 752050, India.

1. Introduction

Let $T = (T_1, \ldots, T_n)$ be an *n*-tuple of commuting bounded linear operators on a complex Hilbert space \mathcal{H} . A closed subspace $\mathcal{W} \subset \mathcal{H}$ is called a *wandering subspace* for T if

$$\mathcal{W} \perp T^{\boldsymbol{k}} \mathcal{W} \qquad (\boldsymbol{k} \in \mathbb{N}^n \setminus \{\boldsymbol{0}\}).$$

We say that \mathcal{W} is a generating wandering subspace for T if in addition

$$\mathcal{H} = \overline{\operatorname{span}} \{ T^{k} \mathcal{W} : k \in \mathbb{N}^{n} \}.$$

Wandering subspaces were defined by Halmos in [10]. One of the main observations from [10] is the following. Let \mathcal{E} be a Hilbert space and let $M_z : H^2_{\mathcal{E}}(\mathbb{D}) \to H^2_{\mathcal{E}}(\mathbb{D})$ be the operator of multiplication with the argument on the \mathcal{E} -valued Hardy space $H^2_{\mathcal{E}}(\mathbb{D})$ on the unit disc \mathbb{D} . Suppose that \mathcal{S} is a non-trivial closed M_z -invariant subspace of $H^2_{\mathcal{E}}(\mathbb{D})$. Then

$$\mathcal{W} = \mathcal{S} \ominus z\mathcal{S}$$

is a wandering subspace for $M_z|_{\mathcal{S}}$ such that

$$M^p_r \mathcal{W} \perp M^q_r \mathcal{W}$$

for all $p \neq q$ in \mathbb{N} and

$$\mathcal{S} = \overline{\operatorname{span}} \{ z^m \mathcal{W} : m \in \mathbb{N} \}.$$

Hence

$$\mathcal{S} = \bigoplus_{m=0}^{\infty} z^m \mathcal{W}$$

and up to unitary equivalence

$$M_z|_{\mathcal{S}}$$
 on $\mathcal{S} \cong M_z$ on $H^2_{\mathcal{W}}(\mathbb{D})$.

In particular, we have $\mathcal{S} = V(H^2_{\mathcal{W}}(\mathbb{D}))$, where $V : H^2_{\mathcal{W}}(\mathbb{D}) \to H^2_{\mathcal{E}}(\mathbb{D})$ is an isometry and $VM_z = M_z V$. One can show (see Lemma V.3.2 in [14] for details and more precise references) that any such intertwining isometry V acts as the multiplication operator V = $M_{\Theta} : H^2_{\mathcal{W}}(\mathbb{D}) \to H^2_{\mathcal{E}}(\mathbb{D}), f \mapsto \Theta f$, with a bounded analytic function $\Theta \in H^{\infty}_{\mathcal{B}(\mathcal{W},\mathcal{E})}(\mathbb{D})$ such that Θ possesses isometric boundary values almost everywhere. In this case Download English Version:

https://daneshyari.com/en/article/5773080

Download Persian Version:

https://daneshyari.com/article/5773080

Daneshyari.com